The correct option is B.
Stars live out most of their lives at MAIN SEQUENCE. Stars generally are divided into three major stages, these are:
1. Pro stars and pre-main sequence star
2. Main sequence and giant star
3. Variable stars
Major stages in the life of a star can last for millions of years.
When air pressure is low it is Cold
Answer:
pH = 1.32
Explanation:
H₂M + KOH ------------------------ HM⁻ + H₂O + K⁺
This problem involves a weak diprotic acid which we can solve by realizing they amount to buffer solutions. In the first deprotonation if all the acid is not consumed we will have an equilibrium of a wak acid and its weak conjugate base. Lets see:
So first calculate the moles reacted and produced:
n H₂M = 0.864 g/mol x 1 mol/ 116.072 g = 0.074 mol H₂M
54 mL x 1L / 1000 mL x 0. 0.276 moles/L = 0.015 mol KOH
it is clear that the maleic acid will not be completely consumed, hence treat it as an equilibrium problem of a buffer solution.
moles H₂M left = 0.074 - 0.015 = 0.059
moles HM⁻ produced = 0.015
Using the Henderson - Hasselbach equation to solve for pH:
ph = pKₐ + log ( HM⁻/ HA) = 1.92 + log ( 0.015 / 0.059) = 1.325
Notes: In the HH equation we used the moles of the species since the volume is the same and they will cancel out in the quotient.
For polyprotic acids the second or third deprotonation contribution to the pH when there is still unreacted acid ( Maleic in this case) unreacted.
This attracts bees which, when collecting the nectar, they carry residue pollen on the flower to the next flower, which then pollinates the flowers, hence allowing them to asexually reproduce.
Answer:
2HNO3 (aq) + Na2CO3 (aq) → 2NaNO3 (aq) + CO2 (g) + H2O (l)
Explanation:
This question is asking to write and balance an equation between between aqueous sodium carbonate (Na2CO3) and aqueous nitric acid (HNO3). The equation is as follows:
HNO3 (aq) + Na2CO3 (aq) → NaNO3 (aq) + CO2 (g) + H2O (l)
However, this equation is not balanced as the number of atoms of each element must be the same on both sides of the equation. To balance the equation, one will make use of coefficients as follows:
2HNO3 (aq) + Na2CO3 (aq) → 2NaNO3 (aq) + CO2 (g) + H2O (l)