Answer is: adding NaCl will lower the freezing point of a solution.
A solution (in this example solution of sodium chloride) freezes at a lower temperature than does the pure solvent (deionized water).
The higher the solute concentration (sodium chloride), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
Dissociation of sodium chloride in water: NaCl(aq) → Na⁺(aq) + Cl⁻(aq).
I believe it’s Non polar molecule
Velocity and mass are directly proportional to the quantity of momentum by:
p = mv. Therefore, and increase in either velocity or mass will lead to an increase in momentum and vice versa. Momentum during a reaction is always conserved, meaning that the mass and initial velocity before a reaction will always be equal to the change in mass and velocity produced after the reaction. Kinetic energy after a reaction, however, is not always conserved. For example if a fast moving vehicle collided with a stationary vehicle, and moved together, the overall kinetic energy would be after the reaction, as a heaver mass would be moved by the same velocity causing a decrease in kinetic energy.
I don't know if this is exactly what you are looking for, but in physics this is how it is understood.
Answer:
dear jesus i need glasses
Explanation:
CH3 is the empirical formula for the compound.
A sample of a compound is determined to have 1.17g of Carbon and 0.287 g of hydrogen.
The number of atom or moles in the compound is
1.17 g C X 1 mol of C / 12.011 g C = 0.097411 mol of C.
0.287 g H x 1 mol of H / 1 g H = 0.28474 mol H.
This compound contains 0.097411 mol of carbon and 0.28474 mol of Hydrogen.
So we can represent the compound with the formula C0.974H0.284.
Subscripts in formulas can be made into whole numbers by multiplying the smaller subscript by the larger subscript.
we can divide 0.284 by 0.0974.
0.284 / 0.0974 = 3.
So here, Carbon is one and hydrogen is 3.
We can write the above formula as a CH3.
Hence the empirical formula for the sample compound is CH3.
For a detailed study of the empirical formula refer given link brainly.com/question/13058832.
#SPJ1.