Number 9 adding oil lubricates the chain making it easier to pedal. Also the oil prevents rusting
Answer:
The correct option here is the first option
Explanation:
Covalent bond is the bond that involves the sharing of electrons between the participating atoms. The electrons (in the outermost shells of the atoms) that are involved this sharing are called the "shared pair" while those electrons (in the outermost shells of the atoms) that are not involved in this sharing are called the "lone pair". Bonding eventually leads to each of the participating atoms achieving it's octet configuration.
Carbon will bind covalently with fluorine (to form carbon tetrafluoride) with each of the electrons on the outermost shell of the carbon been shared covalently with fluorine atoms (that also requires just one electron to achieve it's octet configuration). Thus, at the end, we would have one carbon atom being covalently linked to four flourine atoms.
Magnesium nitrate o not react with magnesium sulfate because it cannot displace the ions involved. The cations are the same so they just cancel the charges. If you look at it, even of a reaction occurs the product will still be the same substances.
Answer:
Mass = 11 g
Explanation:
Given data:
Mass of Zn = 5 g
Mass of HCl = 50 g
Mass of hydrogen gas produced = 6 g
Mass of zinc chloride produced = ?
Solution:
Chemical equation:
Zn + 2HCl → ZnCl₂ + H₂
Number of moles of Zn:
Number of moles = mass / molar mass
Number of moles = 5 g / 65.38 g/mol
Number of moles = 0.08 mol
Number of moles of HCl :
Number of moles = mass / molar mass
Number of moles = 50 g / 36.5 g/mol
Number of moles = 1.4 mol
Now we will compare the moles of both reactant with zinc chloride.
Zn : ZnCl₂
1 : 1
0.08 : 0.08
HCl : ZnCl₂
2 : 1
1.4 : 1/2×1.4 =0.7 mol
The number of moles of zinc chloride produced by Zn are less so it will limiting reactant.
Mass of zinc chloride:
Mass = number of moles × molar mass
Mass = 0.08 mol × 136.3 g/mol
Mass = 11 g
Answer:
See explanation
Explanation:
The third law of thermodynamics states that "the entropy of a perfect crystal of a pure substance approaches zero as the temperature approaches zero" (Wikipedia).
One example of the third law of thermodynamics has to do with steam. Steam is gaseous water. Since it is a gas, its molecules are free to move around therefore its entropy is high. When the temperature of the steam is decreased below 100 degrees, the molecules of steam loose energy and turn into liquid water and do not move as freely as they did in the gaseous state. If the temperature is further decreased to yield ice at zero degrees, the molecules of water are "frozen" in their positions and the entropy of the system decreases to zero.
Also, the ions in ionic crystal solids move around when the substance is in solution or in molten state hence the substance conducts electricity. When the ionic substance is in solid state, the ions do not move about and the entropy of the solid system tends towards zero.