1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gwar [14]
3 years ago
10

Un vendedor de camiones quiere suspender un vehículo de 4000 kg como se muestra en la figura, con fines publicitarios. La distan

cia b =15 m y la suma de las longitudes de los cables AB y BC es de 42 m. Los puntos A y C tienen una altura de 20 m . ¿Cuáles son las tensiones en los cables?
Engineering
1 answer:
Rina8888 [55]3 years ago
3 0

Answer:

english

Explanation:

You might be interested in
Why is logging done during drilling?
Solnce55 [7]

Answer:

Logging while drilling (LWD) is a technique of conveying well logging tools into the well borehole downhole as part of the bottom hole assembly (BHA). ... In these situations, the LWD measurement ensures that some measurement of the subsurface is captured in the event that wireline operations are not possible

8 0
3 years ago
3.3 Equation (2) for VCPP is rather difficult to prove at this time. Take it as a challenge to derive it as you learn increasing
podryga [215]

Answer:

For an RC integrator circuit, the input signal is applied to the resistance with the output taken across the capacitor, then VOUT equals VC. As the capacitor is a frequency dependant element, the amount of charge that is established across the plates is equal to the time domain integral of the current. That is it takes a certain amount of time for the capacitor to fully charge as the capacitor can not charge instantaneously only charge exponentially.

Therefore the capacitor current can be written as:

 

his basic equation above of iC = C(dVc/dt) can also be expressed as the instantaneous rate of change of charge, Q with respect to time giving us the following standard equation of: iC = dQ/dt where the charge Q = C x Vc, that is capacitance times voltage.

The rate at which the capacitor charges (or discharges) is directly proportional to the amount of the resistance and capacitance giving the time constant of the circuit. Thus the time constant of a RC integrator circuit is the time interval that equals the product of R and C.

Since capacitance is equal to Q/Vc where electrical charge, Q is the flow of a current (i) over time (t), that is the product of i x t in coulombs, and from Ohms law we know that voltage (V) is equal to i x R, substituting these into the equation for the RC time constant gives:

We have seen here that the RC integrator is basically a series RC low-pass filter circuit which when a step voltage pulse is applied to its input produces an output that is proportional to the integral of its input. This produces a standard equation of: Vo = ∫Vidt where Vi is the signal fed to the integrator and Vo is the integrated output signal.

The integration of the input step function produces an output that resembles a triangular ramp function with an amplitude smaller than that of the original pulse input with the amount of attenuation being determined by the time constant. Thus the shape of the output waveform depends on the relationship between the time constant of the circuit and the frequency (period) of the input pulse.

By connecting two RC integrator circuits together in parallel has the effect of a double integration on the input pulse. The result of this double integration is that the first integrator circuit converts the step voltage pulse into a triangular waveform and the second integrator circuit converts the triangular waveform shape by rounding off the points of the triangular waveform producing a sine wave output waveform with a greatly reduced amplitude.

RC Differentiator

For a passive RC differentiator circuit, the input is connected to a capacitor while the output voltage is taken from across a resistance being the exact opposite to the RC Integrator Circuit.

A passive RC differentiator is nothing more than a capacitance in series with a resistance, that is a frequency dependentTherefore the capacitor current can be written as:

 

 

device which has reactance in series with a fixed resistance (the opposite to an integrator). Just like the integrator circuit, the output voltage depends on the circuits RC time constant and input frequency.

Thus at low input frequencies the reactance, XC of the capacitor is high blocking any d.c. voltage or slowly varying input signals. While at high input frequencies the capacitors reactance is low allowing rapidly varying pulses to pass directly from the input to the output.

This is because the ratio of the capacitive reactance (XC) to resistance (R) is different for different frequencies and the lower the frequency the less output. So for a given time constant, as the frequency of the input pulses increases, the output pulses more and more resemble the input pulses in shape.

We saw this effect in our tutorial about Passive High Pass Filters and if the input signal is a sine wave, an rc differentiator will simply act as a simple high pass filter (HPF) with a cut-off or corner frequency that corresponds to the RC time constant (tau, τ) of the series network.

Thus when fed with a pure sine wave an RC differentiator circuit acts as a simple passive high pass filter due to the standard capacitive reactance formula of XC = 1/(2πƒC).

But a simple RC network can also be configured to perform differentiation of the input signal. We know from previous tutorials that the current through a capacitor is a complex exponential given by: iC = C(dVc/dt). The rate at which the capacitor charges (or discharges) is directly proportional to the amount of resistance and capacitance giving the time constant of the circuit. Thus the time constant of a RC differentiator circuit is the time interval that equals the product of R and C. Consider the basic RC series circuit below.

Explanation:

3 0
4 years ago
Technician A says that one planetary gear set can provide gear reduction, overdrive, and reverse. Technician B says that most tr
777dan777 [17]

Answer:

Both technician A and technician B are correct

Explanation:

A planetary gearbox consists of a gearbox with the input shaft and the output shaft that is aligned to each other. It is used to transfer the largest torque in the compact form. A planetary gearbox has a compact size and low weight and it has high power density.

One planetary gear set can provide gear reduction, overdrive, and reverse. Also, most transmissions today use compound (multiple) planetary gears set.

So, both technician A and technician B are correct.

8 0
3 years ago
A building window pane that is 1.44 m high and 0.96 m wide is separated from the ambient air by a storm window of the same heigh
sdas [7]

Answer:

the rate of heat loss by convection across the air space = 82.53 W

Explanation:

The film temperature

T_f = \frac{T_1+T_2}{2} \\\\= \frac{20-10}{2}\\\\= \frac{10}{2}\\\\= 5^0\ C

to kelvin = (5 + 273)K = 278 K

From  the " thermophysical properties of gases at atmospheric pressure" table; At T_f = 278 K ; by interpolation; we have the following

\frac{278-250}{300-250}= \frac{v-11.44(10^{-6})}{15.89(10^{-6})-11.44(10^{-6})}  → v 13.93 (10⁻⁶) m²/s

\frac{278-250}{300-250}= \frac{k-22.3(10^{-3}}{26.3(10^{-3}-22.3(10^{-3})} → k = 0.0245 W/m.K

\frac{278-250}{300-250}= \frac{\alpha - 15.9(10^{-6})}{22.5(10^{-6}-15.9(10^{-6})} → ∝ = 19.6(10⁻⁶)m²/s

\frac{278-250}{300-250}= \frac{Pr-0.720}{0.707-0.720} → Pr = 0.713

\beta = \frac{1}{T_f} \\=\frac{1}{278} \\ \\ = 0.00360 \ K ^{-1}

The Rayleigh number for vertical cavity

Ra_L  = \frac{g \beta (T_1-T_2)L^3}{\alpha v}

= \frac{9.81*0.00360(20-(-10))*0.06^3}{19.6(10^{-6})*13.93(10^{-6})}

= 8.38*10^5

\frac{H}{L}= \frac{1.44}{0.06} \\ \\= 24

For the rectangular cavity enclosure , the Nusselt number empirical correlation:

Nu_L = 0.42(8.38*10^5)^{\frac{1}{4}}(0.713)^{0.012}(24){-0.3}

NU_L= \frac{hL}{k}= 4.878

\frac{hL}{k}= 4.878

\frac{h*0.06}{0.0245}= 4.878

h = \frac{4.878*0.0245}{0.06}

h = 1.99 W/m².K

Finally; the rate of heat loss by convection across the air space;

q = hA(T₁ - T₂)

q = 1.99(1.4*0.96)(20-(-10))

q = 82.53 W

3 0
4 years ago
A liquid stream containing 52.0 mole% benzene and the balance toluene at 20.0°C is fed to a continuous single-stage evaporator a
OLga [1]

Answer:

Operating Pressure P = 793.716 mmHg

Y_Benzene y1 = 0.541

Explanation:

Given that;

liquid phase leaving the evaporator = 32.5 mole%

Equi Temp T = 99.0°C = 99 + 273.15 = 372.15 K

Now let 1 and 2 represent Benzene and Toluene respectively.

Antoine's Constant for these components are;

COMPONENETS        A                B                    C

Benzene 1             4.72583     1660.652        -1.461

Toluene  2            4.07827     1343.943         -53.773

Antoine's equation is expressed as;

Ps = 10^(A - (B/(T+C)))

Ps is in Bar and T is in Kelvin

so

P1s = 10^( 4.72583 - (1660.652/(372.15 - (-1.461)))) = 1.7617 Bar

P2s = 10^( 4.07827 - (1343.943/(372.15 - (-53.773)))) = 0.7195 Bar

now here, liquid leaving and vapor are both in equilibrium

composition of liquid leaving are;

X1 = 32.5%    = 0.325

X2 = 1 - X1 = 1 - 0.325 = 0.675

Now

Raoult's Law is expressed as;

p × y1=x1 × pis     for all components

So for Benzene ; p × y1=x1 × p1s   ------let this be equation 1

for Toluene ; p × y2=x2 × p2s   ------let this be equation 2

lets add equ 1 and 2

p × y1=x1 × p1s + p × y2=x2 × p2s

p(y1 + y2) = x1 × p1s + x2 × p2s

buy y1 + y2 = 1

therefore we substitute

p(1) = 0.325 × 1.7617 + 0.675 × 0.7195 = 1.0582 Bar

we know that 1 Bar = 750.062 mmHg

so p = 1.0582 × 750.062

p = 793.716 mmHg

Also from equation 1

p × y1=x1 × p1s

y1 = (x1 × p1s) / p

y1 = (0.325 × 1.7617) / 1.0582

y1 = 0.541

Therefore;

Operating Pressure P = 793.716 mmHg

Y_Benzene y1 = 0.541

5 0
3 years ago
Other questions:
  • . A storm sewer is carrying snow melt containing 1.200 g/L of sodium chloride into a small stream. The stream has a naturally oc
    8·1 answer
  • Consider a fully-clamped circular diaphragm poly-Si with a radius of 250 μm and a thickness of 4 μm. Assume that Young’s modulus
    14·1 answer
  • Vending machine controller (adapted from Katz, "Contemporary Logic Design") Design and implement a finite state machine that con
    10·1 answer
  • A budding electronics hobbyist wants to make a simple 1.0-nF capacitor for tuning her crystal radio, using two sheets of aluminu
    10·1 answer
  • What is the hardest part of thermodynamics?
    5·1 answer
  • Water at 70 kPa and 1008C is compressed isentropically in a closed system to 4 MPa. Determine the final temperature of the water
    6·1 answer
  • Discuss typical advantages and disadvantages of an irrigation system?
    5·1 answer
  • I really need help i will give brainly plz no funny answers
    14·1 answer
  • What is the gear ratio of the given train
    6·1 answer
  • the tire restraining device or barrier shall be removed immediately from service for any of these defects except
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!