Is this actually a question? Lol.
The iodine can change the color of the starch to a deep blue to black color.
The specific volume will be different for various kinds of cells. The safe answer would be that the new cell will pretty much have the same volume as the one that it divided from. This is true for most eukaryotic cells unless other factors like epigenetics or mutations come into place.
One example of moments a cell would increase in volume is during hypertrophy. This simply means that the cell is increasing in size (compared to: hyperplasia -- which is an increase in number of the cells). Hypertrophy is definitely an increase in volume of the cell but this doesn't necessarily translate to cell division (i.e. just because the cell is big now, doesn't mean it will still be big when it divides).
Another moment of increasing volume of the cell and now also related to cell division would be during the two stages in the cell cycle (i.e., G1 and G2 phases). This is the growth phase of the cell preparing to divide. However when mitosis or division happens, the cells will normally end with the same volume as when it started.
This are safe generalizations referring to the human cells. It would help if a more specific kind of cell was given.
Explanation:
<h3><em><u>keep the body running smoothly, a continuous concentration of 60 to 100 mg/dL of glucose in blood plasma is needed. During exercise or stress the body needs a higher concentration because muscles require glucose for energy (Basu et al., 2009).</u></em></h3>
<span>Sir Isaac Newton quantified the gravity between two objects when he formulated his three laws of motion. ... Yet Newton's laws assume that gravity is an innate force of an object that can act over a distance
</span>
In 1905, Albert Einstein determined that the laws of physics are the same for all non-accelerating observers, and that the speed of light in a vacuum was independent of the motion of all observers. This was the theory of special relativity. It introduced a new framework for all of physics and proposed new concepts of space and time.
Einstein then spent 10 years trying to include acceleration in the theory and published his theory of general relativity in 1915. In it, he determined that massive objects cause a distortion in space-time, which is felt as gravity.