Answer:
387 volts
Explanation:
Ohm's law is used to relate voltage, current and resistance.
The formula is as follows:V = I * R
where:
V is the applied voltage (measured in volts)
I is the current flowing (measured in amperes)
R is the resistance (measured in ohm)
In the given, we have:
current (I) = 9 amperes
resistance (R) = 43 ohm
Substitute with the givens in the above formula to get the voltage as follows:
V = 9 * 43
V = 387 volts
Hope this helps :)
Explanation:
c. if the vector is oriented at 0° from the X -axis.
⚡️⚡️⚡️Kinetic energy ⚡️⚡️⚡️
Answer:
It comes out the positive side of the battery and goes in to the negative side of the battery
Explanation:
There are already electrons in wires in a circuit before you add the battery. By adding the battery, you're giving the electrons the energy it needs to move along the circuit.
In a series circuit, the circuit is one continuous loop so there is only one path for the electrons to go - out of the positive side of the battery and around the circuit then goes back into the negative side of the battery.
However, with a parallel circuit, there are two or more ways the electrons can go so they take the path of least resistance. The electrons still go out the positive side of a battery but along the circuit, the electrons will go through the path of least resistance ( I tend to think of it like a net with holes in it - the lower the resistance the bigger the holes for the electrons to go through so more can fit in a set amount of time ) but the electrons still go out of the positive side and in through the negative
Answer:
I'm pretty sure its the 2nd one.