Answer:
Explanation:
Change in length of spring = 2.13 m
Component of weight acting on spring = mg sinθ
so
mg sinθ = k x where k is spring constant and x is total stretch due to force on the spring.
Here x = 2.13
mg sin17 = k x 2.13
31 x 9.8 sin17 = k x 2.13
k = 41.7 N/m
b ) In case surface had friction , spring would have stretched by less distance .
It is so because , the work done by gravity in stretching down is stored as potential energy in spring . In case of dissipative force like friction , it also takes up some energy in the form of heat etc so spring stretches less.
Make Neptune closer to the sun because then it would have a stronger gravitation pull. Because the closer the objects are, they will have a stronger gravitaional force and when the object has more mass, the gravity is also stronger. So, if the mass is reduced, the gravity force would be reduced, but if you bring neptune closer, the gravity force would increase
According to Boyle's Law, volume is inversely proportional to pressure. It means
if the volume of a gas goes up the pressure goes down and if the volume of the gas goes up the pressure goes down. When the pressure of air inside the inflated balloon is more than the atmospheric pressure outside the balloon. And also when the density inside is greater than the density outside. The molecules inside the balloon move and bang around the inner walls which produces force, which provides the pressure of an enclosed air.
Answer:
Current- the flow of free charges, such as electrons and ions
Drift velocity- the average speed at which these charges move
<h2>
Speed with which it return to its initial level is 100 m/s</h2>
Explanation:
We have equation of motion v² = u² + 2as
Initial velocity, u = 100 m/s
Acceleration, a = -9.81 m/s²
Final velocity, v = ?
Displacement, s = 0 m
Substituting
v² = u² + 2as
v² = 100² + 2 x -9.81 x 0
v² = 100²
v = ±100 m/s
+100 m/s is initial velocity and -100 m/s is final velocity.
Speed with which it return to its initial level is 100 m/s