<span>Answer:
For this problem, you would need to know the specific heat of water, that is, the amount of energy required to raise the temperature of 1 g of water by 1 degree C. The formula is q = c X m X delta T, where q is the specific heat of water, m is the mass and delta T is the change in temperature. If we look up the specific heat of water, we find it is 4.184 J/(g X degree C). The temperature of the water went up 20 degrees.
4.184 x 713 x 20.0 = 59700 J to 3 significant digits, or 59.7 kJ.
Now, that is the energy to form B2O3 from 1 gram of boron. If we want kJ/mole, we need to do a little more work.
To find the number of moles of Boron contained in 1 gram, we need to know the gram atomic mass of Boron, which is 10.811. Dividing 1 gram of boron by 10.811 gives us .0925 moles of boron. Since it takes 2 moles of boron to make 1 mole B2O3, we would divide the number of moles of boron by two to get the number of moles of B2O3.
.0925/2 = .0462 moles...so you would divide the energy in KJ by the number of moles to get KJ/mole. 59.7/.0462 = 1290 KJ/mole.</span>
(a)The change in Gibbs free energy for the reaction has been 2.6 kJ/mol.
(b) The change in Gibbs free energy for the reaction has been -49.3 kJ/mol.
(c) The change in Gibbs free energy for the reaction has been 91.38 kJ/mol.
Best Answer: <span>(a)
8.9 x 10^-7 = x^2 / 0.15-x
x = [OH-] = 0.00037 M
pOH = 3.4
pH = 14 - 3.4 = 10.6
(b)
Ka = Kw/Kb = 5.6 x 10^-10 = x^2 / 0.20-x
x = [H+] = 0.000011 M
pH = 5.0</span>
Answer:
A) CH3CH2CH2CH2CH2CH2OH
Explanation:
For this question, we have the following answer options:
A) CH3CH2CH2CH2CH2CH2OH
B) (CH3CH2)2CH(OH)CH2CH3
C) (CH3CH2)2CHOHCH3
D) (CH3CH2)3COH
E) (CH3CH2)2C(CH3)OH
We have to remember the<u> reaction mechanism</u> of the substitution reaction with
. <em>The idea is to generate a better leaving group in order to add a "Br" atom.</em>
The
attacks the "OH" generation new a bond to P (O-P bonds are very strong), due to this new bond we will have a better leaving group that can remove the oxygen an allow the attack of the Br atom to generating a new C-Br bond. This is made by an <u>Sn2 reaction</u>. Therefore we will have a faster reaction with <u>primary substrates</u>. In this case, the only primary substrate is molecule A. So, <em>"CH3CH2CH2CH2CH2CH2OH"</em> will react faster.
See figure 1
I hope it helps!
An ionic compound that results from the reaction of an acid and a base is called a(n) salt. the cation in this compound comes from the base while the anion comes from the acid.
When an acid and a base are together, they react to counteract each other's effects and create a salt.
Water is created when the OH(-) anion of the base and the H(+) cation of the acid mix.
A salt is a substance that is created when an anion from an acid and a base combine.
Common table salt, NaCl, is created when sodium hydroxide and hydrochloric acid are combined.
The positive ion (cation) of a base and the negative ion (anion) of an acid make up a salt.
A neutralizing reaction occurs when an acid and a base interact. Additionally, sodium chloride, generally known as table salt, is referred to as salt.
Learn more about neutralization reaction here brainly.com/question/23008798
#SPJ4