1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kifflom [539]
3 years ago
8

Can you solve this I am confused

Mathematics
2 answers:
mr Goodwill [35]3 years ago
8 0
The answer is B and C. Hope this helps!
d1i1m1o1n [39]3 years ago
8 0
The answer is is b & c
You might be interested in
1) Gena’s new outfit originally cost $75. She received 20% off. How much did Gena’s outfit cost?
Paha777 [63]

Answer:

1. $60

2. 600 Calories were burned

3. D

Step-by-step explanation:

1. $75 x .20=$15

75-15=$60

2. What I started with is 200/40=5 calories burned per min

60 plus 60=120

5x120=600

3. It's the only option that has something decreasing. and there is a -5 which means it's getting subtracted or its decreasing.  

6 0
3 years ago
Read 2 more answers
Please help pre Algebra question
qaws [65]

Answer:

4=No

-3=No

2=Yes

0=No

Step-by-step explanation:

enter enter all the factors into the equation and see which one equals -28 on both sides at the end.

5 0
2 years ago
-9=k/6-8<br><br> can anyone help please.
AleksAgata [21]

Answer:

k=18

Step-by-step explanation:

have a good day :)

7 0
3 years ago
Read 2 more answers
Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based
notsponge [240]

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

6 0
2 years ago
Mary buys last year's best-selling novel, in hardcover, for $18.00. This is with a 25% discount from the original price. What wa
Hitman42 [59]
A 25% discount means u paid 75%
75% of the original price is 18...
0.75x = 18.....with x being the original price
x = 18 / 0.75
x = 24 <== the original price
7 0
3 years ago
Read 2 more answers
Other questions:
  • a wheel contains eight slices, numbered sequentially 1 through 8. the probability of landing on each slice is equal. if the whee
    13·2 answers
  • What is the value of y?
    12·2 answers
  • Let's list the elements of these sets and write whether thoy are empty
    11·1 answer
  • What is the volume of the following rectangular prism?
    10·1 answer
  • Find the length of chord AD
    14·1 answer
  • Help me please.<br><img src="https://tex.z-dn.net/?f=help%20%5C%3A%20%20me" id="TexFormula1" title="help \: me" alt="help \: m
    8·1 answer
  • Step by step please !
    6·1 answer
  • What method do i use to solve this?
    5·1 answer
  • Determine the cost of the two services will be the same amount and what the price will be? The struts family is deciding between
    8·1 answer
  • Find the smallest number. 8.9, 9.21, 9.73, 8.2
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!