Answer:
0.0890 M
Explanation:
Since the concentration of KCl is irrelevant in this case, the concentration of Na2S2O3 can be determined using a simple dilution equation:
C1V1 = C2V2, where C1 = 0.149 M, V1 = 150 mL, V2 = 250 mL
C2 = 0.149 x 150/250
= 0.089 M
To determine the concentration of S2O32- (aq), consider the equation:

The concentration of Na2S2O3 and S2O32- (aq) is 1:1
Hence, the concentration in molarity of S2O32- (aq) is 0.089 M.
To 3 significant figures = 0.0890 M
Answer:
0.1082M of Barium Hydroxide
Explanation:
KHP reacts with Ba(OH)2 as follows:
2KHP + Ba(OH)2 → 2H2O + Ba²⁺ + 2K⁺ + 2P²⁻
<em>Where 2 moles of KHP reacts per mole of barium hydroxide</em>
<em />
To solve this question we must find the moles of KHP in 1.37g. With these moles and the reaction we can find the moles of Ba(OH)2 and its molarity using the volume of the solution (31.0mL = 0.0310L) as follows:
<em>Moles KHP -Molar mass: 204.22g/mol-</em>
1.37g * (1mol / 204.22g) = 0.006708 moles KHP
<em>Moles Ba(OH)2:</em>
0.006708 moles KHP * (1mol Ba(OH)2 / 2mol KHP) =
0.003354 moles Ba(OH)2
<em>Molarity:</em>
0.003354 moles Ba(OH)2 / 0.0310L =
<h3>0.1082M of Barium Hydroxide</h3>
Which of the following processes moves rock materials across the surface of the earth?
C. Erosion
Good luck! :)