Answer:
18.84 g of silver.
Explanation:
We'll begin by calculating the number atoms present in 5.59 g of sulphur. This can be obtained as follow:
From Avogadro's hypothesis,
1 mole of sulphur contains 6.02×10²³ atoms.
1 mole of sulphur = 32 g
Thus,
32 g of sulphur contains 6.02×10²³ atoms.
Therefore, 5.59 g of sulphur will contain = (5.59 × 6.02×10²³) / 32 = 1.05×10²³ atoms.
From the calculations made above, 5.59 g of sulphur contains 1.05×10²³ atoms.
Finally, we shall determine the mass of silver that contains 1.05×10²³ atoms.
This is illustrated below:
1 mole of silver = 6.02×10²³ atoms.
1 mole of silver = 108 g
108 g of silver contains 6.02×10²³ atoms.
Therefore, Xg of silver will contain 1.05×10²³ atoms i.e
Xg of silver = (108 × 1.05×10²³)/6.02×10²³
Xg of silver = 18.84 g
Thus, 18.84 g of silver contains the same number of atoms (i.e 1.05×10²³ atoms) as 5.59 g of sulfur
Answer:
0.404M
Explanation:
...<em>To make exactly 100.0mL of solution...</em>
Molar concentration is defined as the amount of moles of a solute (In this case, nitrate ion, NO₃⁻) in 1 L of solution.
To solve this question we need to convert the mass of Fe(NO₃)₃ to moles. As 1 mole of Fe(NO₃)₃ contains 3 moles of nitrate ion we can find moles of nitrate ion in 100.0mL of solution, and we can solve the amount of moles per liter:
<em>Moles Fe(NO₃)₃ -Molar mass: 241.86g/mol-:</em>
3.26g * (1mol / 241.86g) =
0.01348 moles Fe(NO₃)₃ * (3 moles of NO₃⁻ / 1mole Fe(NO₃)₃) =
<em>0.0404 moles of NO₃⁻</em>
In 100mL = 0.1L, the molar concentration is:
0.0404 moles of NO₃⁻ / 0.100L =
<h3>0.404M</h3>
Answer:
4.5moles
Explanation:
First, let us balance the equation given from the question. This is illustrated below:
KClO3 —> KCl + O2
There are 2 atoms of O on the right side and 3 atoms on the left. It can be balance by putting 2 in front of KClO3 and 3 in of O2 as shown below
2KClO3 —> KCl + 3O2
Now, we have 2 atoms each of K and Cl on the left side and 1atom each of K and Cl on the right. It can be balance by putting 2 in front of KCl as shown below:
2KClO3 —> 2KCl + 3O2
Now the equation is balanced.
From the balanced equation,
2 moles of KClO3 produced 3 moles of O2.
Therefore, 3 moles of KClO3 will produce = (3 x 3) /2 = 4.5moles of O2.
Therefore 3 moles of KClO3 will produce 4.5 moles of O2
Answer:
26.95 %
Explanation:
Air contains the highest percentage of oxygen and nitrogen gases. Magnesium then combines with both of the gases:


Firstly, find the total number of moles of magnesium metal:

Let's say that x mol react in the first reaction and y mol react in the second reaction. This means:

According to stoichiometry, we form:

Multiplying moles by the molar mass of each substance will yield mass. This means we form a total of:

The total mass is given, so we have our second equation to solve:

We have two unknowns and two equations, we may then solve:


Express y from the first equation:

Substitute into the second equation:





Moles of nitride formed:

Convert this to mass:

Find the percentage:

Understanding chemistry and its principles enables us to predict and understand various properties of substances. For example, because we know that ionic bonds are very strong and difficult to break, we know that any substance that has these bonds will have a high melting point, because melting is a process that requires the intermolecular bonds present in the solid state to be broken. This can be applied to table salt, sodium chloride, which has an ionic structure and a melting point of almost 800 degrees Celsius. Similarly, many other properties and characteristics may be predicted using concepts of chemistry.