Answer:
His results will be skewed because there was more water than stock solution. Which would cause the percentage solution to be less than 50% therefore the density would be less than the actual value.
Explanation:
The solution will have percentage less than that of 50%. Therefore the density would be less than the actual value.
Suppose there should be 50 mL of the solution, and he added 60 mL. So 10 mL of the solution is added more.
Suppose the mass of the solute is m.
Originally, the density is =

Now after adding extra 10 mL , the density becomes
.
Therefore, 
So the density decreases when we add more solution.
The negative log function that determines the acidity or alkalinity by hydronium ion concentration is called pH.
The substance having high
will have:
Option B. A low
and a high 
This characteristic can be explained as:
- The concentrations of
and
are inversely dependent on each other so when the concentration of raises then the concentration of
drops and vice versa.
- The pH of a solution or substance is calculated with the help of:
![\rm pH = \rm - log \rm [H^{+}]](https://tex.z-dn.net/?f=%5Crm%20%20pH%20%20%3D%20%5Crm%20-%20log%20%20%5Crm%20%5BH%5E%7B%2B%7D%5D)
From the formula, it can be deduced that when the concentration of
is high then the pH has a low value and it means that the solution is acidic.
- pH can also be written as:

From this formula we can that when the value of pH is less then the value of pOH will be increased and vice versa.
Therefore, when pOH is in high concentration then
is low.
To learn more about pH and pOH follow the link:
brainly.com/question/13557815
Answer: The density of 0.50 grams of gaseous carbon stored under 1.50 atm of pressure at a temperature of -20.0 °C is 0.867 g/L.
Explanation:
- d = m/V, where d is the density, m is the mass and V is the volume.
- We have the mass m = 0.50 g, so we must get the volume V.
- To get the volume of a gas, we apply the general gas law PV = nRT
P is the pressure in atm (P = 1.5 atm)
V is the volume in L (V = ??? L)
n is the number of moles in mole, n = m/Atomic mass, n = 0.50/12.0 = 0.416 mole.
R is the general gas constant (R = 0.082 L.atm/mol.K).
T is the temperature in K (T(K) = T(°C) + 273 = -20.0 + 273 = 253 K).
- Then, V = nRT/P = (0.416 mol)(0.082 L.atm/mol.K)(253 K) / (1.5 atm) = 0.576 L.
- Now, we can obtain the density; d = m/V = (0.50 g) / (0.576 L) = 0.867 g/L.
Answer:
Explanation:
C = 49.48
H = 5.19
O = 16.48
N = 28.85
ratio of moles
= 49.48 / 12 : 5.19 / 1 : 16.48 / 16 : 28.85 / 14
= 4.123 : 5.19 : 1.03 : 2.06
= 4 : 5 : 1 : 2
so the empirical formula = C₄ H₅O N₂
Let molecular formula = ( C₄ H₅ON₂ )ₙ ,
n ( 48 + 5 + 16 + 28 ) = 119.19
97 n = 194.19
n = 2 ( approx )
molecular formula = C₈ H₁₀O₂ N₄
I was going to help but I don’t understand the question