Answer:
Vi = 0.055 m³ = 55 L
Explanation:
From first Law of Thermodynamics, we know that:
ΔQ = ΔU + W
where,
ΔQ = Heat absorbed by the system = 52.5 J
ΔU = Change in Internal Energy = -102.5 J (negative sign shows decrease in internal energy of the system)
W = Work Done in Expansion by the system = ?
Therefore,
52.5 J = - 102.5 J + W
W = 52.5 J + 102.5 J
W = 155 J
Now, the work done in a constant pressure condition is given by:
W = PΔV
W = P(Vf - Vi)
where,
P = Constant Pressure = (0.5 atm)(101325 Pa/1 atm) = 50662.5 Pa
Vf = Final Volume of System = (58 L)(0.001 m³/1 L) = 0.058 m³
Vi = Initial Volume of System = ?
Therefore,
155 J = (50662.5 Pa)(0.058 m³ - Vi)
Vi = 0.058 m³ - 155 J/50662.5 Pa
Vi = 0.058 m³ - 0.003 m³
<u>Vi = 0.055 m³ = 55 L</u>
Answer:
The difference in the length of the bridge is 0.42 m.
Explanation:
Given that,
Length = 1000 m
Winter temperature = 0°C
Summer temperature = 40°C
Coefficient of thermal expansion 
We need to calculate the difference in the length of the bridge
Using formula of the difference in the length

Where,
= temperature difference
=Coefficient of thermal expansion
L= length
Put the value into the formula


Hence, The difference in the length of the bridge is 0.42 m.
Because the elevator moves at a constant speed, it's in equilibrium and the net force acting on it is zero. Then the tension in the cable exactly equals the magnitude of the elevator's weight, which is
(3000 kg) (9.80 m/s²) = 29,400 N
In my estimation I would say C, I was leaning towards A, but I believe that would merely be "incomplete combustion." I hope this was semi-helpful!
When the heat source is removed from a fluid, convection currents in the fluid will eventually distribute heat uniformly throughout the fluid. When all of the fluid is at the same temperature, convection currents will stop.