1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kompoz [17]
4 years ago
6

All valid equations in physics have consistent units. Are all equations that have consistent units valid?

Physics
1 answer:
sweet [91]4 years ago
8 0

Answer:

c. No. An equation may have consistent units but still be numerically invaid.

Explanation:

For an equation to be corrected, it should have consistent units and also be numerically correct.

Most equation are of the form;

(Actual quantity) = (dimensionless constant) × (dimensionally correct quantity)

From the above, without the dimensionless constant the equation would be numerically wrong.

For example; Kinetic energy equation.

KE = 0.5(mv^2)

Without the dimensionless constant '0.5' the equation would be dimensionally correct but numerically wrong.

You might be interested in
Help with Physical Science! I have to do this discussion on potential and kinetic energy. The example of the problem is a 4 poun
algol [13]

Answer:

Tying a 4 weight pound on a string is a potential energy because it is at rest but cutting it and letting it fall experiences a kinetic energy because it will be in motion.

8 0
4 years ago
A physics student stands on a cliff overlooking a lake and decides to throw a softball to her friends in the water below. She th
aliina [53]

Answer:

58.5 m

Explanation:

First of all, we need to find the total time the ball takes to reach the water. This can be done by looking at the vertical motion only.

The initial vertical velocity of the ball is

u_y = u sin \theta

where

u = 21.5 m/s is the initial speed

\theta=33.5^{\circ} is the angle

Substituting,

u_y = (21.5) sin 33.5^{\circ} =11.9 m/s

The vertical position of the ball at time t is given by

y = h + u_y t + \frac{1}{2}gt^2

where

h = 13.5 m is the initial heigth

g = -9.8 m/s^2 is the acceleration of gravity (negative sign because it points downward)

The ball reaches the water when y = 0, so

0 = h + u_yt +\frac{1}{2}gt^2\\0 = 13.5 +11.9 t - 4.9t^2

Which gives two solutions: t = 3.27 s and t = -0.84 s. We discard the negative solution since it is meaningless.

The horizontal velocity of the ball is

u_y = u cos \theta = (21.5) cos 33.5^{\circ} =17.9 m/s

And since the motion along the horizontal direction is a uniform motion, we can find the horizontal distance travelled by the ball as follows:

d= u_x t = (17.9)(3.27)=58.5 m

3 0
3 years ago
What solutes do not dissolve well in water?
hammer [34]

Answer:

Many substances do not dissolve in water and that is because they are non-polar and do not interact well with water molecules. A common example is oil and water. Oil contains molecules that are non-polar, thus they do not dissolve in water.

Explanation:

6 0
4 years ago
Read 2 more answers
A hula hoop is rolling along the ground with a translational speed of 26 ft/s. It rolls up a hill that is 16 ft high. Determine
nikklg [1K]

Answer:12.8 ft/s

Explanation:

Given

Speed of hoop v=26\ ft/s

height of top h=16\ ft

Initial energy at bottom is

E_b=\frac{1}{2}mv^2+\frac{1}{2}I\omega ^2

Where m=mass of hoop

I=moment of inertia of hoop

\omega=angular velocity

for pure rolling v=\omega R

I=mR^2

E_b=\frac{1}{2}mv^2+\frac{1}{2}mR^2\times (\frac{v}{R})^2

E_b=mv^2=m(26)^2=676m

Energy required to reach at top

E_T=mgh=m\times 32.2\times 16

E_T=512.2m

Thus 512.2 m is converted energy is spent to raise the potential energy of hoop and remaining is in the form of kinetic and rotational energy

\Delta E=676m-512.2m=163.8m

Therefore

163.8 m=mv^2

v=\sqrt{163.8}

v=12.798\approx 12.8\ ft/s

7 0
3 years ago
A plane is moving due north, directly towards its destination. Its airspeed is 200 mph. A constant breeze is blowing from west t
Vikki [24]

Answer:

200 m/s

Explanation:

Given that,

A plane is moving due north, directly towards its destination. Its airspeed is 200 mph. A constant breeze is blowing from west to east at 60 mph.

We need to find the rate at which the plane is moving towards North. It can be given by :

V_x=v\cos\theta

Where

\theta is the angle with the North

V_x=200\times \cos(\dfrac{60}{200})\\\\=199.99\ m/s\\\\\approx 200\ m/s

Hence, the plane is moving at a rate of 200 m/s.

4 0
3 years ago
Other questions:
  • When heat is added to or removed from a substance, it may change its state. What state will most likely result if heat is added
    7·2 answers
  • Bobby places a 4.75 cm tall light bulb a distance of 33.2 cm from a concave mirror. If the mirror has a focal length of 28.2, th
    10·2 answers
  • A technique in MRA where signal intensity depends on the direction of flow and thus requires gradient application in all three p
    12·1 answer
  • Two neutral metal spheres on wood stands are touching. A negatively charged rod is held directly above the top of the left spher
    6·1 answer
  • How is the power of a magnet determined
    7·1 answer
  • estion: Why is it important to use vector quantities and not just scalar quantities to describe the motion of an object? Vector
    14·1 answer
  • A three-phase load has a phase voltage of 240 V and a phase current of 18 A. What is the apparent power of this load
    14·1 answer
  • 8)
    11·1 answer
  • A penny and a quarter are embedded in the concrete bottom of a swimming pool filled with water. Which of these coins experiences
    9·1 answer
  • B) Sketch a ray diagram to show how the image
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!