<span>the answer is c. energy</span>
<span>The organisms in the soil food chain that don't obtain energy directly from plants are protozoa.
</span>
OK, so to answer this question, you will simply use the molality equation which is as follows:
<span>M1V1 = M2V2
In the givens you have:
M1 = 2M
V1 is the unknown
M2 = 0.4M
V2 = 100 ml
</span>plug in the givens in the above equation:
<span>2 x V1 = 0.4 x 100
</span>therefore:
V1 = 20 ml
Based on this: you should take 20 ml of the 2 M solution and make volume exactly 100 ml in a volumetric flask by diluting in water.
Answer:
0.508 mole
Explanation:
NOTE: Since no hydrogen is attached to the compound given in question above, it means the compound is CCl₄.
The number of mole present in 78.2 g of CCl₄ can be obtained as follow:
Mass of CCl₄ = 78.2 g
Molar mass of CCl₄ = 12 + (35.5×4)
= 12 + 142
= 154 g/mol
Mole of CCl₄ =?
Mole = mass / molar mass
Mole of CCl₄ = 78.2 / 154
Mole of CCl₄ = 0.508 mole
Therefore, 0.508 mole is present in 78.2 g of CCl₄
Answer:
81.04°C
Explanation:
Heat loss by water = Heat gained by Aluminum
Heat loss by water;
H = MCΔT
ΔT = 100 - T2
M = 580g
c = 4.2
H = 580 * 4.2 (100 - T2)
H = 243600 - 2436T2
Heat ganed by Aluminium
H = MCΔT
ΔT = T2 - 24
M = 900g
c = 0.9
H = 900 * 0.9 (T2 - 24)
H = 810 T2 - 19440
243600 - 2436T2 = 810 T2 - 19440
243600 + 19440 = 810 T2 + 2436T2
263040 = 3246 T2
T2 = 81.04°C
Assumption;
Assume that energy diffuses throughout the pan and water so that all parts reach the same final temperature.