Answer:
An increase in pressure would cause less volume and vice versa. They are inversely proportional.
Explanation:
This is due to Boyle's Law (and because an increase in pressure would increase the force on the container, however, if it's a closed container, it would burst)
<em>Feel free to mark it as brainliest :D</em>
Answer:
the initial temperature of the iron sample is Ti = 90,36 °C
Explanation:
Assuming the calorimeter has no heat loss to the surroundings:
Q w + Q iron = 0
Also when the T stops changing means an equilibrium has been reached and therefore, in that moment, the temperature of the water is the same that the iron ( final temperature of water= final temperature of iron = T )
Assuming Q= m*c*( T- Tir)
mc*cc*(T-Tc)+mir*cir*(T - Tir) = 0
Tir = 20.3 °C + 300 g * 4.186 J/g°C * (20.3 C - 19 °C) / ( 51.9 g * 0.449 J/g°C )
Tir = 90.36 °C
Note :
- The specific heat capacity of water is assumed 1 cal/g°C = 4.186 J/g°C
- We assume no reaction between iron and water
False. An increase in temperature is an exothermic reaction. However, when a temperature decreases this is known as an endothermic reactionz
Magnesium + Hydrocloric acid -> Magnesium chloride + hydrogen
You can observe a single displacement reaction
"Describe to show that the has formed is hydrogen"
I don't know what you mean. I can show the chemical equation though.
Mg(s) + 2 HCl(aq) --> MgCl 2(aq) + H 2(g)
Answer:
A) 14. 25 × 10²³ Carbon atoms
B) 34.72 grams
Explanation:
1 molecule of Propane has 3 atoms of Carbon and 8 atoms of Hydrogen.
The sample has 3.84 × 10²⁴ H atoms.
If 8 atoms of Hydrogrn are present in 1 molecule of propane.
3.84 × 10²⁴ H atoms are present in

<u>= 4.75 × 10²³ molecules of Propane</u>.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
No. of Carbon atoms in 1 molecule of propane = 3
=> C atoms in 4.75× 10²³ molecules of Propane = 3 × 4.75 × 10²³
<u>= 14.25 × 10²³ </u>
<u>________________________________________</u>
<u>Gram</u><u> </u><u>Molecular</u><u> </u><u>Mass</u><u> </u><u>of</u><u> </u><u>Propane</u><u>(</u><u>C3H8</u><u>)</u>
= 3 × 12 + 8 × 1
= 36 + 8
= 44 g
1 mole of propane weighs 44g and has 6.02× 10²³ molecules of Propane.
=> 6.02 × 10²³ molecules of Propane weigh = 44 g
=> 4. 75 × 10²³ molecules of Propane weigh =



<u>= 34.72 g</u>