There are two ways to solve this. The longer way is to use those equations to calculate numbers for total distance.
The easier way is to find the area under the graph. That's right, AREA UNDER VELOCITY-TIME graph is the TOTAL DISTANCE travelled!
it's a shortcut.
Let's split up the area into a triangle and rectangle:
Triangle = 0.5(4-0)(10-0) = 20 m
Rectangle = (6-4)(10-0) = 20 m
Total distance = 40 m!
Answer:
Explanation:
We have given the rest mass of SPARTYON = 945 times of mass of electron
We know that mass of electron 
So mass of SPARTYON 
Speed of light 
According to Einstein equation energy is given by

Now according to planks's rule
Energy is given by
, here h is plank's constant 
So 
56-999999999999999999999-4 is the best for my mom
Answer:

Explanation:
We are given that
The wavelength of sound wave=
1 cm/s=
Speed of sound wave,v=
We have to find the period of the wave.
We know that
Frequency=
Using the formula
Frequency =
Hz
Time period=
Using identity:
Hence, the time period of the wave=
Explanation:
Given the conditions A,B and C when the pendulum is released, at point A the initial velocity of the pendulum is zero(0), the potential energy stored is maximum(P.E= max),
the conditions can be summarized bellow
point A
initial velocity= 0
final velocity=0
P.E= Max
K.E= 0
point B
initial velocity= maximum
final velocity=maximum
P.E=K.E
point C
initial velocity= min
final velocity=min
P.E= 0
K.E= max