Answer:
C) 50 m/s
Explanation:
With the given information we can calculate the acceleration using the force and mass of the box.
Newton's 2nd Law: F = ma
- 5 N = 1 kg * a
- a = 5 m/s²
List out known variables:
- v₀ = 0 m/s
- a = 5 m/s²
- v = ?
- Δx = 250 m
Looking at the constant acceleration kinematic equations, we see that this one contains all four variables:
Substitute known values into the equation and solve for v.
- v² = (0)² + 2(5)(250)
- v² = 2500
- v = 50 m/s
The final velocity of the box is C) 50 m/s.
They differ because they are transverse wave. That is their direction of travel is perpendicular to its vibrations.
Answer:
1. <u>F = ma</u> <em>F = 0.2kg * 20m/s² = 4Kg * m/s² =</em> 4N
2. <u>F = ma</u> <em>F - 18Kg * 3m/s² = 54Kg * m/s² =</em> 54N
3. <u>F = ma</u> <em>F = 0.025Kg * 5m/s² =</em> 0.125N
4. <u>F = ma</u> <em>F = 50Kg * 4m/s² =</em> 200N
5. <u>F = ma</u> <em>F = 70Kg * 4m/s² =</em> 280N
6. <u>F = ma</u> <em>F = 9Kg * 9.8m/s² =</em> 88.2N
Explanation:
Hope this helps ! ^^
Answer:
true
Explanation:
as long as you are interested, you are happy
If the object is moving in a straight line at a constant speed, then that's
the definition of zero acceleration. It can only happen when the sum of
all forces (the 'net' force) on the object is zero.
And it doesn't matter what the object's mass is. That argument is true
for specks of dust, battleships, rocks, stars, rock-stars, planets, and
everything in between.