Answer:
From the data we know that runner A and runner B are 11 km apart from the start because (6+5) km
So the runner from the east direction has distance as unknown km, rate= 9 k/h ; time= d/r=x/9 hr
So runner towards the west will be
distance = 11-x, rate= 8 k/h, time = d/r = (11-x)/8
So equating east and west time we have
x/9= (11-x)/8
8x=99-9x
17x=99
x=5.92 km
That is the distance covered by runner towards the east and he will meet the runner toward the west at
6-5.92=0.08 km west of the flagpole.
To solve this problem we will apply the concepts related to the conservation of momentum. This can be defined as the product between the mass and the velocity of each object, and by conservation it will be understood that the amount of the initial momentum is equal to the amount of the final momentum. By the law of conservation of momentum,

Here,
= Mass of Basketball
= Mass of Tennis ball
= Initial velocity of Basketball
= Initial Velocity of Tennis ball
= Final velocity of Basketball
= Final velocity of the tennis ball
Replacing,

Solving for the final velocity of the tennis ball

Therefore the velocity of the tennis ball after collision is 11 m/s
Explanation:
When a constant force acts upon an object the acceleration of the object varies inversely with its mass.

or

If m₁ = 21 kg, a₁ = 3 m/s², m₂ = 9 kg
We need to find a₂
So,

So, if mass is 9 kg, its acceleration is 7 m/s².
Answer:
I think u are traeling at speed of light and not ur friend
Explanation: