Here where you label the y and slope
<h3>
Answer: 10.1 cm approximately</h3>
=====================================================
Explanation:
The double tickmarks show that segments DE and EB are the same length.
The diagram shows that DB = 16 cm long
We'll use these facts to find DE
DE+EB = DB
DE+DE = DB
2*DE = DB
DE = DB/2
DE = 16/2
DE = 8
-------------
Now let's focus on triangle DEC. We just found the horizontal leg is 8 units long. The vertical leg is EC which is unknown for now. We'll call it x. The hypotenuse is CD = 9
Use the pythagorean theorem to find x
a^2+b^2 = c^2
8^2+x^2 = 9^2
64+x^2 = 81
x^2 = 81 - 64
x^2 = 17
x = sqrt(17)
That makes EC to be exactly sqrt(17) units long.
If you follow those same steps for triangle ADE, then you'll find the missing length is AE = 6
---------------
So,
AC = AE+EC
AC = 6 + sqrt(17)
AC = 10.1231056256177
AC = 10.1 cm approximately
Answer:
Yes, your answers are correct.
The volume of a cone is given by V = 1/3πr²h. Since the diameter of the first cone is 4, the radius is 2; therefore the volume is
V = 1/3π(2²)(8) = 32π/3
We divide the volume of the sink, 2000π/3, by the volume of the cone:
2000π/3 ÷ 32π/3 = 2000π/3 × 3/32π = 6000π/96π = 62.5 ≈ 63.
The diameter of the second conical cup is 8, so the radius is 4. The volume then is:
V = 1/3π(4²)(8) = 128π/3
Dividing the volume of the sink, 2000π/3, by 128π/3:
2000π/3 ÷ 128π/3 = 2000π/3 × 3/128π = 6000π/384π = 15.625 ≈ 16
Answer:
48
Step-by-step explanation:
So you take 7x-92+6x+12=180
And then you get x=20
Plug in 20 for x for <LOM
And you get and you get 48
Hope this helped!!
Length (L): 2w + 3
width (w): w
border (b): 
Area (A) = (L + b) * (w + b) <em>NOTE: This is assuming the width also has a border</em>
= (2w + 3 +
) * (w +
)
= 

= 

= 