The oceanographers define salinity by the number of grams of salt per kilogram of water.
Salinity is illustrated as how much salt is present in the given amount of water. It is dependent upon how much salt is found in the ocean in the specific regions. If there is a sunny environment, it may evaporate an ample amount of water, and leave behind a lot of salt, thus, the water has more salinity.
The salinity of the ocean is usually measured in Practical Salinity Unit (PSU), it is a unit based on the characteristics of seawater conductivity.
Answer:
the equilibrium constant is 1.8 x 10⁻5 and strongly favor the reactants.
Explanation:
the chemical reaction provided for the two equation are the same but different direction i.e a reversible reaction. Assuming, the mass of reactants and product and temperature remain constant.
therefore, the equilibrium constant K, is 1.8 x 10⁻5. this is a very small value of K, thereby strongly favor the backward direction to form reactant.
To do this problem, we must first look at the balanced chemical equation for the decomposition of potassium chlorate:
<span>2KClO3 --> 2KCl + 3O2 </span>
<span>We can take the given amount of grams, and use the molar mass of KClO3 to convert to moles. Then, we can use the stoichiometric ratios to relate moles of KClO3 to moles of O2. </span>
<span>(39.09)+(35.45)+(3*15.99)= 122.51 g/ mol = molar mass of KClO3 </span>
<span>45.8 g KClO3/ 122.51 g/ mol KClO3 = .374 moles KClO3 </span>
<span>.374 mol KClO3 *(3 moles O2/2 mol KClO3)= .560 moles O2 </span>
<span>Once we have moles of O2, we can convert to grams of O2. </span>
<span>(2*15.99)= 31.98 g/mol = molar mass of O2 </span>
<span>(.560 moles O2) (31.98 g/mol)= 17.91 g O2 </span>
<span>Hope this helps :)</span>