Answer:
reversible reaction or covalent bonds
Explanation:
(a) The molecular equations shows the equation in which all the species of the reactants and the products are in molecules and the net charge is zero.
The complete ionic equations shows the equation in which all the species of the reactants and the products are in dissociated form and are represented as ions.
The net ionic equations shows the equation in which all the species of the reactants and the products are in dissociated form and do not show the spectator ions which are same in the reactants and the products.
(b) If there is no spectator ions in the reaction, then the complete and the net ionic equations would be identical.
Let's identify first the phases of matter inside each of those beakers. The first beaker on the left has a compact shape and has its own volume. So, that must be solid. The middle beaker has a compact shape but it takes the shape of its container. So, that must be liquid. The third beaker on the right is gas because the molecules are far away from each other.
After identifying each states, let's investigate the energy for phase change. Let's start with the arrows pointing to the right. The first arrow to the right is a phase change from solid to liquid. The intermolecular forces in a solid is the strongest among the three phases of matter. So, you would need an input of energy to break them apart into liquid. The same is true for the phase change from liquid to gas. Therefore, all the arrows pointing to the right require an input of energy.
The reverse arrows pointing to the left needs to release energy. The molecules in the gas state are free such that they can travel from one point to another easily. They have the highest amount of energy. So, if you want the molecules to come closer together, you need to remove the energy to keep them in place. Therefore, the arrows pointing to the right require removal of energy.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
The type of atom has the strongest attraction for electrons in bond formation Chlorine (Ci) c<span>onsider the location of barium, chlorine, iodine, and strontium on the periodic table.</span>
Websites that end in .com or .org should be avoided.