Answer;
d. the specific geometry and types of amino acids in the active site
Explanation;
-Enzymes are highly selective catalysts, meaning that each enzyme only speeds up a specific reaction. The molecules that an enzyme works with are called substrates. The substrates bind to a region on the enzyme called the active site.
-For a substrate to bind to the active site of an enzyme it must fit in the active site and be chemically attracted to it. The shape of an enzyme determines how it works. Enzymes have active sites that substrate molecules (the substances involved in the chemical reaction) fit into when a reaction happens.
Answer:
Yes chemistry. Try to add then multiply the top. Get the moles and you will find it.
Explanation:
Try to add then multiply the moles in the equation
Answer:
pH =3.8
Explanation:
Lets call the monoprotic weak acid HA, the dissociation equilibria in water will be:
HA + H₂O ⇄ H₃O⁺ + A⁻ with Ka = [ H₃O⁺] x [A⁻]/ [HA]
The pH is the negative log of the H₃O⁺ concentration, we know the equilibrium constant, Ka and the original acid concentration. So we will need to find the [H₃O⁺] to solve this question.
In order to do that lets set up the ICE table helper which accounts for the species at equilibrium:
HA H₃O⁺ A⁻
Initial, M 0.40 0 0
Change , M -x +x +x
Equilibrium, M 0.40 - x x x
Lets express these concentrations in terms of the equilibrium constant:
Ka = x² / (0.40 - x )
Now the equilibrium constant is so small ( very little dissociation of HA ) that is safe to approximate 0.40 - x to 0.40,
7.3 x 10⁻⁶ = x² / 0.40 ⇒ x = √( 7.3 x 10⁻⁶ x 0.40 ) = 1.71 x 10⁻³
[H₃O⁺] = 1.71 x 10⁻³
Indeed 1.71 x 10⁻³ is small compared to 0.40 (0.4 %). To be a good approximation our value should be less or equal to 5 %.
pH = - log ( 1.71 x 10⁻³ ) = 3.8
Note: when the aprroximation is greater than 5 % we will need to solve the resulting quadratic equation.
Answer:
the work input is depented on the work output
Explanation:
Given is the ratio of conjugate base and conjugate acid of phosphoric acid. pH of a substance is the concentration of the hydrogen ions in its solution and higher this concentration lower is the value of pH.
pKa value is a measure of the strength of acid, it is the negative log of acid dissociation constant Ka.