Condensation occurs through the release of energy
Answer:

Explanation:
The Celsius and Kelvin scales are used to measure the temperature of matter. Their scales and unit differences are the same (1 K increase = 1 °C increase), but they have different starting points.
So, the conversion is quite simple and only requires addition because of the different starting points. The formula is:

The boiling point of liquid nitrogen is -195.8 °C. We can substitute this value into the formula.


The boiling point of liquid nitrogen is 77.35 Kelvin.
Answer:
3.09kg
Explanation:
First, let us write a balanced equation for the reaction. This is illustrated below:
2C8H18 + 25O2 —> 16CO2 + 18H2O
Molar Mass of C8H18 = (12x8) + (18x1) = 96 + 18 = 114g/mol
Mass of C8H18 from the balanced equation = 2 x 114 = 228g
Converting 228g of C8H18 to kg, we obtained:
228/1000 = 0.228kg
Molar Mass of CO2 = 12 + (2x16) = 12 + 32 = 44g/mol
Mass of CO2 from the balanced equation = 16 x 44 = 704g
Converting 704g of CO2 to kg, we obtained:
704/1000 = 0.704kg
From the equation,
0.228kg of C8H18 produced 0.704kg of CO2.
Therefore, 1kg of C8H18 will produce = 0.704/0.228 = 3.09kg of CO2