Answer:
The only one that makes sense IF the model behaves as the Earth is D.
Explanation:
An SI base unit for measuring length would be meters.
Answer:
The equation for wave speed can be used to calculate the speed of a wave when both wavelength and wave frequency are known. Consider an ocean wave with a wavelength of 3 meters and a frequency of 1 hertz. The speed of the wave is: Speed = 3 m x 1 wave/s = 3 m/s.
SO... take your meters and hezert and do tha same
Explanation:
Plz mark me as brainlyist
Remember this.
Ionic molecules has ionic bonds
Nonpolar molecules has dispersion (Van del Waals)
Polar molecules could either have hydrogen bonding or Dipole-Dipole. Hydrogen bonding is when you have F, O or N with H, every other polar molecule is dipole-dipole.
a. polar- dipole-dipole
b. polar- hydrogen bonding
c. nonpolar- dispersion
d. nonpolar- dispersion
e. polar- dipole-dipole
f. polar-dipole-dipole
g. nonpolar- dispersion
h. polar- hydrogen bonding.
<h3>
Answer:</h3>
382.63 K
<h3>
Explanation:</h3>
We are given;
- Volume of Iodine as 71.4 mL
- Mass of Iodine as 0.276 g
- Pressure of Iodine as 0.478 atm
We are required to calculate the temperature of Iodine
- We are going to use the ideal gas equation;
- According to the ideal gas equation; PV = nRT, where R is the ideal gas constant, 0.082057 L.atm/mol.K.
T = PV ÷ nR
But, n, the number of moles = Mass ÷ Molar mass
Molar mass of iodine = 253.8089 g/mol
Thus, n = 0.276 g ÷ 253.8089 g/mol
= 0.001087 moles
Therefore;
T = (0.478 atm × 0.0714 L) ÷ (0.001087 moles × 0.082057)
= 382.63 K
Thus, the temperature of Iodine in Kelvin is 382.63 K