Answer:
The given molecules are SO2 and BrF5.
Explanation:
Consider the molecule SO2:
The central atom is S.
The number of domains on S in this molecule is three.
Domain geometry is trigonal planar.
But there is a lone pair on the central atom.
So, according to VSEPR theory,
the molecular geometry becomes bent or V-shape.
Hybridization on the central atom is
.
Consider the molecule BrF5:
The central atom is Br.
The number of domains on the central atom is six.
Domain geometry is octahedral.
But the central atom has a lone pair of electrons.
So, the molecular geometry becomes square pyramidal.
The hybridization of the central atom is
.
The shapes of SO2 and BrF5 are shown below:
The answer would be D because from my research it's the only one that didn't have a catalyst
1,3-butadiene is the simplest conjugated diene and undergoes 1,4 addition reaction in acidic environment.
Chemical reaction: CH₂=CH-CH=CH₂ + H₂O → CH₃-CH=CH-CH₂-OH.
CH₂=CH-CH=CH₂ - 1,3-butadiene.
CH₃-CH=CH-CH₂-OH - 2-buten-1-ol.
Diene<span> or </span>diolefin<span> is a </span>hydrocarbon<span> that has two </span>carbon double bonds<span>.</span>
<span>2.51 grams
You want to prepare 19.16 g of some solution which will have 13.1% of it's mass being sucrose. So we just need to perform some simple multiplication:
19.16g * 0.131 = 2.50996g
Rounding to 3 significant figures gives 2.51 g.</span>
Answer:the CO2 molecule has an excess of electron