Answer:
5.625 moles of oxygen, O₂.
Explanation:
The balanced equation for the reaction is given below:
4Al + 3O₂ —> 2Al₂O₃
From the balanced equation above,
4 moles of Al reacted with 3 moles of O₂.
Finally, we shall determine the number of mole of O₂ required to react with 7.5 moles of aluminum, Al. This can be obtained as illustrated below:
From the balanced equation above,
4 moles of Al reacted with 3 moles of O₂.
Therefore, 7.5 moles of Al will react with = (7.5 × 3)/4 = 5.625 moles of O₂.
Thus, 5.625 moles of O₂ is needed for the reaction.
Answer: An alpha-particle is identical to the nucleus of a normal (atomic mass four) helium atom i.e. a doubly ionised helium atom. Alpha particles (also termed alpha radiation or alpha rays) was the first nuclear radiation to be discovered, beta particles and gamma rays were identified soon after.
Answer:
So, if a rock is changed or broken but stays where it is, it is called weathering. If the pieces of weathered rock are moved away, it is called erosion.
Answer:
The sample of lead has a volume of 11.1 cm³
Explanation:
<u>Step 1:</u> Data given
x cm³ lead has a density of 11.3 g/cm³
it has the same mass as 330cm³ of a piece of redwood with density 0.38g/cm³
<u>Step 2</u>: Calculate mass of the piece of redwood
Density = mass/volume
mass = density * volume
Mass of the piece of redwood = 0.38 g/cm³ * 330cm³ = 125.4 grams
Since the sample of lead has the same mass, it also has a mass of 125.4 grams
<u>Step 3</u>: Calculate volume of the lead
Density = mass/ volume
Volume = mass/ density
Volume of lead = 125.4g / 11.3g/cm³ = 11.097 cm³≈11.1 cm³
The sample of lead has a volume of 11.1 cm³
Answer:
Volume = 4.28L
Explanation:
Charles's gas law relates the volume and temperature of a gas at constant pressure. This law says that at constant pressures if we raise the temperature of a gas it will expand and if we reduce the temperature the volume will decrease. The formula is as follows:

So, the initial conditions are 2.22L and 23.9 °C ant the final conditions are 46.1 °C we replace them in the equation. And then we solve it.


