Answer:
Stopwatches versus clocks. To improve reliability repeat the experiment multiple times according to an identical procedure. Record these steps so the experiment can be repeated at any time
Explanation:
Answer:
The reaction is exothermic.
Yes, released.
The heat released is 4,08x10³ kJ.
Explanation:
For the reaction:
C₃H₈(g) + 5O₂(g) → 3CO₂(g) + 4H₂O(l)
The ΔH is -2220 kJ, As ΔH is <0, <em>The reaction is exothermic.</em>
As the reaction is exothermic, the heat of the reaction will be <em>released.</em>
The heat released in 81,0g is:
81,0g C₃H₈×
×
= <em>4,08x10³ kJ</em>
<em>-Using molar mass of C₃H₈ to convert mass to moles and knowing that there are released 2220 kJ per mole of C₃H₈-</em>
I hope it helps!
The reaction formula CH4 + 2O2 → CO2 + 2H2O shows the oxidation of 1 mole of CH4 (Methane) will yield 1 mole of CO2 (Carbon Dioxide). Since 1 mole of CH4 will weigh 12g (for the Carbon) + 4g (1g for each Hydrogen) = 16g, then 32g of CH4 will correspond to 32g / 16g/mole = 2 moles. Therefore the oxidation of 2 moles of CH4 will yield 2 moles of CO2.
1. the Moon must be in line with the Earth and Sun - New Moon for a solar eclipse and Full Moon for a lunar eclipse.2. the Moon must be at one of its nodes. Most of the time the Moon at New or Full passes above or below the Sun because its orbit is tilted relative to the ecliptic. An eclipse can occur only when it is at a node, in other words crossing the ecliptic.