Centimeters are units of length.
<span>12.4 g
First, calculate the molar masses by looking up the atomic weights of all involved elements.
Atomic weight manganese = 54.938044
Atomic weight oxygen = 15.999
Atomic weight aluminium = 26.981539
Molar mass MnO2 = 54.938044 + 2 * 15.999 = 86.936044 g/mol
Now determine the number of moles of MnO2 we have
30.0 g / 86.936044 g/mol = 0.345081265 mol
Looking at the balanced equation
3MnO2+4Al→3Mn+2Al2O3
it's obvious that for every 3 moles of MnO2, it takes 4 moles of Al. So
0.345081265 mol / 3 * 4 = 0.460108353 mol
So we need 0.460108353 moles of Al to perform the reaction. Now multiply by the atomic weight of aluminum.
0.460108353 mol * 26.981539 g/mol = 12.41443146 g
Finally, round to 3 significant figures, giving 12.4 g</span>
Hello :)
Based on the information I received reading the picture, the answer should be “B”
Explanation: if I am wrong I’m very sorry. But that should be the answer
Answer : The correct option is, pressure.
Explanation :
The ideal gas equation is,

where,
P = pressure of the gas
V = volume of the gas
n = number of moles of gas
T = temperature of the gas
R = gas constant
The value of 'R' has several different values which are :




That means, the value of 'R' is different due the change in the pressure value and all the variables (temperature, volume and moles) are constant.
Hence, the correct option is, pressure.