Answer:
a)3.5s
b)28.57m/S
c)34.33m/S
d)44.66m/S
Explanation:
Hello!
we will solve this exercise numeral by numeral
a) to find the time the ball takes in the air we must consider that vertically the ball experiences a movement with constant acceleration whose value is gravity (9.81m / S ^ 2), that the initial vertical velocity is zero, we use the following equation for a body that moves with constant acceleration

where
Vo = Initial speed
=0
T = time
g=gravity=9.81m/s^2
y = height=60m
solving for time

T=3.5s
b)The horizontal speed remains constant since there is no horizontal acceleration.
with the value of the distance traveled (100m) and the time that lasts in the air (3.5s) we estimate the horizontal speed

c)
to find the final vertical velocity we use the equations for motion with constant velocity as follows
Vf=Vo+g.t
Vf=0+(9.81 )(3.5)=34.335m/S
d)Finally, to find the resulting velocity, we add the horizontal and vertical velocities vectorially, this is achieved by finding the square root of the sum of its squares

<span>Astronomers are able to determine facts about the composition of these moons by examining the nature of light that is reflected from their surfacy using a method called spectroscopy. This process works because different materials tend to reflect light at different wavelengths So, by observing at which wavelengths a planetary body reflects light, astronomers are able to estimate its composition.</span>
Answer:
potential energy
Explanation:
this is because potential energy= mgh
so when m= 2m
p.e. = 2 times the previous value
Therefore , When mass is doubled , Potential energy gets doubled. When mass is halved , Potential energy decreases by half.
Answer:
oop false have a great day
Explanation:
i hope i helped u
400 5000 and 200 because the input was a good we