The picture isn’t clear so I can’t read the dimensions of the box but I can try my best to guide u through the question.
For part a u need to find the volume of the box as that will equal the volume of sand that can be filled inside.
For this u multiply the height, width and length of the box.
For part b the mass of sand alone will be
=Mass of box + sand - Mass of empty box
=216 - 40
=176 grams
For part c the density of sand can be calculated by the formula
Density= Mass/Volume
So the mass (176g) / volume from part a
For part d u need to know that something will float if it has a lower density than what it is floating in. If the final density of sand that was found in part c is less than the density of gold (19.3 g/cm^3) it will float. Otherwise it will sink.
Hope this helped!
Answer:
F = 4.147 × 10^23
v = 1.31 × 10^4
Explanation:
Given the following :
mass of Jupiter (m1) = 1.9 × 10^27
Mass of sun (m2) = 1.99 × 10^30
Distance between sun and jupiter (r) = 7.8 × 10^11m
Gravitational force (F) :
(Gm1m2) / r^2
Where ; G = 6.673×10^-11 ( Gravitational constant)
F = [(6.673×10^-11) × (1.9 × 10^27) × (1.99 × 10^30)] / (7.8 × 10^11)^2
F = [25.231 × 10^(-11+27+30)] / (60.84 × 10^22)
F = (25.231 × 10^46) / (60.84 × 10^22)
F = 3.235 × 10^(46 - 22)
F = 0.4147 × 10^24
F = 4.147 × 10^23
Speed of Jupiter (v) :
v = √(Fr) / m1
v = √[(4.147 × 10^23) × (7.8 × 10^11) / (1.9 × 10^27)
v = √32.3466 × 10^(23+11) / 1.9 × 10^27
v = √32.3466× 10^34 / 1.9 × 10^27
v = √17. 023 × 10^34-27
v = √17.023 × 10^7
v = 13047.221
v = 1.31 × 10^4
Energy (in Physics) is the ability to do work.
Answer:
vf = 3.27[m/s]
Explanation:
In order to solve this problem we must analyze each body individually and find the respective equations. The free body diagram of each body (box and bucket) should be made, in the attached image we can see the free body diagrams and the respective equations.
With the first free body diagram, we determine that the tension T should be equal to the product of the mass of the box by the acceleration of this.
With the second free body diagram we determine another equation that relates the tension to the acceleration of the bucket and the mass of the bucket.
Then we equalize the two stress equations and we can clear the acceleration.
a = 3.58 [m/s^2]
As we know that the bucket descends 1.5 [m], this same distance is traveled by the box, as they are connected by the same rope.
![x = \frac{1}{2} *a*t^{2}\\1.5 = \frac{1}{2}*(3.58) *t^{2} \\t = 0.91 [s]](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2Aa%2At%5E%7B2%7D%5C%5C1.5%20%3D%20%5Cfrac%7B1%7D%7B2%7D%2A%283.58%29%20%2At%5E%7B2%7D%20%5C%5Ct%20%3D%200.91%20%5Bs%5D)
And the speed can be calculated as follows:
![v_{f}=v_{o}+a*t\\v_{f}=0+(3.58*0.915)\\v_{f}= 3.27[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3Dv_%7Bo%7D%2Ba%2At%5C%5Cv_%7Bf%7D%3D0%2B%283.58%2A0.915%29%5C%5Cv_%7Bf%7D%3D%203.27%5Bm%2Fs%5D)