Answer:
c seems to be the only reasonable answer
Answer:
the rate of the change of the length of the shadow is - 0.8625 m/s.
The negative(-) sign means the length of the shadow decreases at a rate of 0.8625 m/s.
Explanation:
Given the data in the question;
Let x represent the man's distance from building,
initially x = 1m2
dx/d t= -2.3 m/s
Also Let y represent shadow height
so we determine dy/dt when x is 4m from the building
form the image description of the problem, we see two-like triangles with the same base and height ratios
so
2 / (12-x) = y / 12
24 = y(12 - x )
y = 24 / (12-x)
dy/dt = 24/(12-x)² × dx/dt
Now at x = 4,
we substitute
dy/dt will be;
⇒ 24/(12 - 4)² × -2.3
= 24/64 - 2.3
= 0.375 × -2.3
dy/dt = - 0.8625 m/s
Therefore, the rate of the change of the length of the shadow is - 0.8625 m/s.
The negative(-) sign means the length of the shadow decreases at a rate of 0.8625 m/s.
Answer:
h₍₁₎ = 495,1 meters
h₍₂₎ = 480,4 m
h₍₃₎ = 455,9 m
...
..
Explanation:
The exercise is "free fall". t = 
Solving with this formula you find the time it takes for the stone to reach the ground (T) = 102,04 s
The heights (h) according to his time (t) are found according to the formula:
h(t) = 500 - 1/2 * g * t²
Remplacing "t" with the desired time.
Answer: Got It!
<em>Explanation: </em>let s = speed at launch
v = 0 at top = s sin 63 - g t
so at top
t = s sin 63/g = .0909 s
h = 13.6 = s sin 63 t - 4.9 t^2
13.6 = .081s^2 - .0405 s^2
s^2 = 336
s = 18.3 m/s
0 0
Answer:
A) 12.57 m
B) 5 RPM
C) 3.142 m/s
Explanation:
A) Distance covered in 1 Revolution:
The formula that gives the relationship between the arc length or distance covered during circular motion to the angle subtended or the revolutions, is given as follows:
s = rθ
where,
s = distance covered = ?
r = radius of circle = 2 m
θ = Angle = 2π radians (For 1 complete Revolution)
Therefore,
s = (2 m)(2π radians)
<u>s = 12.57 m</u>
B) Angular Speed:
The formula for angular speed is given as:
ω = θ/t
where,
ω = angular speed = ?
θ = angular distance covered = 15 revolutions
t = time taken = 3 min
Therefore,
ω = 15 rev/3 min
<u>ω = 5 RPM</u>
C) Linear Speed:
The formula that gives the the linear speed of an object moving in a circular path is given as:
v = rω
where,
v = linear speed = ?
r = radius = 2 m
ω = Angular Speed in rad/s = (15 rev/min)(2π rad/1 rev)(1 min/60 s) = 1.571 rad/s
Therefore,
v = (2 m)(1.571 rad/s)
<u>v = 3.142 m/s</u>