The main requirement for a good conductor of electricity is to have a lot of valence electrons. Valence electrons are the electrons of the outer shells of atoms not bound with other atoms (for example through covalent bounds). These electrons are "free to escape" as soon as an electric field with enough intensity is applied to the material, and therefore these electrons will be free to move in the material producing an electric current.
Answer:
0.54m
Explanation:
Step one:
given data
length of seesaw= 3m
mass of man m1= 85kg
weight = mg
W1= 85*10= 850N
mass of daughter m2= 35kg
W2= 35*10= 350N
distance from the center= (1.5-0.2)= 1.3m
Step two:
we know that the sum of clockwise moment equals the anticlockwise moment
let the distance the must sit to balance the system be x
taking moment about the center of the system
350*1.3=850*x
455=850x
divide both sides by 850
x=455/850
x=0.54
Hence the man must sit 0.54m from the right to balance the system
Answer:
I think it is the 3 option
Answer:81.235N
Explanation:
Work=88J
theta=10°
distance=1.1 meters
work=force x cos(theta) x distance
88=force x cos10 x 1.1 cos10=0.9848
88=force x 0.9848 x 1.1
88=force x 1.08328
Divide both sides by 1.08328
88/1.08328=(force x 1.08328)/1.08328
81.235=force
Force=81.235
Answer:
2633.7 s
Explanation:
From the question,
Heat lost by the water heater = Heat gained by the water
Applying,
P = cm(t₂-t₁)/t.................. Equation 1
Where P = power of the heat, c = specific heat capacity of water, m = mass of water, t₁ = initial temperature, t₂ = final temperature, t = time
make t the subject of the equation
t = cm(t₂-t₁)/P.............. Equation 2
From the question,
Given: c = 4190 J/kgK, P = 3.5 kW = 3500 W, m = 40 kg, t₁ = 20°C, t₂ = 75°C
Substitute these values into equation 2
t = 4190×40(75-20)/3500
t = 9218000/3500
t = 2633.7 s