The focal length of given concave lens will be -26.85 cm
The height of an image to the height of an object is the ratio that is used to determine a lens' magnification. Additionally, it is provided in terms of object and image distance. It is equivalent to the object distance to image distance ratio.
Given concave lens creates a virtual image at -47.0 cm and a magnification of +1.75.
We have to find focal length
The focal length can be found out by following way:
Magnification = m = +1.75
m = hi/h
hi = -47 cm
1.75 = -47/h
h = -26.85 cm
So the focal length of given concave lens will be -26.85 cm
Learn more about magnification factor here:
brainly.com/question/6947486
#SPJ10
Answer:
D
Explanation:
6CO² + 6H²O > sunlight, chlorophyll, enzymes > C⁶H¹²O⁶ + 6O²
b. the forces of attraction among them limit their motion.
The drop in physical activity is partly due to inaction during leisure time and sedentary behaviour on the job and at home. Likewise, an increase in the use of "passive" modes of transportation also contributes to insufficient physical activity.
I believe it’s a liquid inside a beaker on a hot Bunsen burner (c)
This is because : Everyday Examples of Convection
Boiling water - The heat passes from the burner into the pot, heating the water at the bottom. Then, this hot water rises and cooler water moves down to replace it, causing a circular motion. Radiator - Puts warm air out at the top and draws in cooler air at the bottom.
Not sure if it’s right tho!