Answer:
Make sure everything is organized have a planner it can help
Get rid of all distractions
Listen to music if it helps you concentrate
Have your notes
Being willing to stay focus on what you are doing
Understand what you are doing
And most off all Be Happy and Remain Calm : )
Answer:

Explanation:
The work function of the metal corresponds to the minimum energy needed to extract a photoelectron from the metal. In this case, it is:

So, the energy of the incoming photon hitting on the metal must be at least equal to this value.
The energy of a photon is given by

where
h is the Planck's constant
c is the speed of light
is the wavelength of the photon
Using
and solving for
, we find the maximum wavelength of the radiation that will eject electrons from the metal:

And since
1 angstrom = 
The wavelength in angstroms is

Explanation:
We have,
Semimajor axis is 
It is required to find the orbital period of a dwarf planet. Let T is time period. The relation between the time period and the semi major axis is given by Kepler's third law. Its mathematical form is given by :

G is universal gravitational constant
M is solar mass
Plugging all the values,

Since,

So, the orbital period of a dwarf planet is 138.52 years.
Answer:
The magnetic field inside the solenoid would decrease by a factor of 2.
Explanation:
The magnetic field, B, of a solenoid of length L, N windings, and radius b with a current, I, flowing through it is given as:
B = (N * r * I) / L
If the length of the solenoid is doubled, 2L,the magnetic field becomes:
B2 = (N * r * I) / 2L
B2 = ½ B
The magnetic field will decrease by a factor of 2.