Answer:
I don't know what you think you can use
A , i think because pure water won't dissolve the powder fast.
A likely application of a radioactive isotope with a short half-life such as Technetium-99 will be as a medical tracer. It will likely be used by a doctor to check the movement of substances within a person's body.
A radioactive isotope with such a long half-life like Rubidium-87 is likely used in the determination of the age of fossils and artifacts found by archaeologists.<span />
Answer: 82.0 g/mole
Explanation:
Use the units to see that if we divide 1.64 grams by 0.0200 moles, we'll get a number that is grams/mole, the definition of formula mass.
1.64/0.0200 = 82.0 g/mole (3 sig figs)
We can't tell from this alone what the molecular formula might be, but C6H10 (cyclohexene) comes close (82.1 grams/mole).
Explanation:
Upon dissolution of KCl heat is generated and temperature of the solution raises.
Therefore, heat generated by dissolving 0.25 moles of KCl will be as follows.

= 4.31 kJ
or, = 4310 J (as 1 kJ = 1000 J)
Mass of solution will be the sum of mass of water and mass of KCl.
Mass of Solution = mass of water + (no. of moles of KCl × molar mass)
= 200 g + 
= 200 g + 13.625 g
= 213.625 g
Relation between heat, mass and change in temperature is as follows.
Q = 
where, C = specific heat of water = 
Therefore, putting the given values into the above formula as follows.
Q = 
4310 J =
Thus, we can conclude that rise in temperature will be
.