Oxygen almost always has an oxidation number of -2
The only exception is in H2O2 which makes it -1, and in OF2 which makes it +2
If 28.0 grams of a gas occupies 22.4 liters at STP, the gas could be carbon monoxide, CO
<h3>Ideal gas </h3>
We understood from the ideal gas equation that 1 mole of any gas occupies 22.4 liters at standard temperature and pressure (STP)
<h3>How to determine the identity of the gas</h3>
To determine the identity of the gas, we shall determine the mass of 1 mole of each gas. This can be obtained as
For C₂H₂
1 mole of C₂H₂ = (12×2) + (2×1) = 26 g
For C₂H₆
1 mole of C₂H₆ = (12×2) + (6×1) = 30 g
For CO₂
1 mole of CO₂ = 12 + (16×2) = 44 g
For CO
I mole of CO = 12 + 16 = 28 g
From the above illustrations, we can see that 1 mole of CO is equivalent to 28 g.
Thus, the correct answer to the question is CO
Learn more about ideal gas equation:
brainly.com/question/4147359
#SPJ1
Answer:
1 mol SO2 contains 6.0213*10^23 molecules
6.023*10^24 molecules = 10 mol SO2
Equation
S(s) + O2(g) → SO2(g)
1 mol S reacts with 1 mol O2 to prepare 1 mol SO2
To prepare 10 mol SO2 you require : 10 mol S plus 10 mol O2
And that is the answer to the question
If you want a mass :
Molar mass S = 32 g/mol You require 10 mol = 320 g
Molar mass O2 = 32 g/mol :You require 10 mol = 320 g
Answer: Mercury-194 is an unstable isotope and hence is radioactive.
Explanation: Mercury-194 is an isotope of mercury, having formula 
Number of protons in this isotope = 80
Number of neutrons in this isotope = 114
This isotope is radioactive in nature and under decay process by Electron Capture.
Electron capture reactions are the reactions in which a proton in a nucleus absorbs an electron and convert it into neutron. The resulting nucleus will have a decreased atomic number and same atomic mass.
Reaction for electron capture of mercury-194 follows:

D. The kilogram is a unit of mass.