Answer:
4 Co(s) + 3 O2(g) = 2 Co2O3(s)
Explanation:
Balanced equation : C. CH₄ + 4Cl₂⇒ CCl₄+ 4HCl
<h3>Further explanation </h3>
Equalization of chemical reactions can be done using variables. Steps in equalizing the reaction equation:
1. gives a coefficient on substances involved in the equation of reaction such as a, b, or c, etc.
2. make an equation based on the similarity of the number of atoms where the number of atoms = coefficient × index (subscript) between reactant and product
3. Select the coefficient of the substance with the most complex chemical formula equal to 1
Reaction
CH₄ + Cl₂⇒ CCl₄+ HCl
aCH₄ + bCl₂⇒ CCl₄+ cHCl
C, left=a, right=1⇒a=1
H, left=4a, right=c⇒4a=c⇒4.1=c⇒c=4
Cl, left=2b, right=4+c⇒2b=4+c⇒2b=4+4⇒2b=8⇒b=4
The equation becomes :
CH₄ + 4Cl₂⇒ CCl₄+ 4HCl
<u>answer</u> 1<u> </u><u>:</u>
Law of conservation of momentum states that
For two or more bodies in an isolated system acting upon each other, their total momentum remains constant unless an external force is applied. Therefore, momentum can neither be created nor destroyed.
<u>answer</u><u> </u><u>2</u><u>:</u><u> </u>
When a substance is provided energy<u> </u>in the form of heat, it's temperature increases. The extent of temperature increase is determined by the heat capacity of the substance. The larger the heat capacity of a substance, the more energy is required to raise its temperature.
When a substance undergoes a FIRST ORDER phase change, its temperature remains constant as long as the phase change remains incomplete. When ice at -10 degrees C is heated, its temperature rises until it reaches 0 degrees C. At that temperature, it starts melting and solid water is converted to liquid water. During this time, all the heat energy provided to the system is USED UP in the process of converting solid to the liquid. Only when all the solid is converted, is the heat used to raise the temperature of the liquid.
This is what results in the flat part of the freezing/melting of condensation/boiling curve. In this flat region, the heat capacity of the substance is infinite. This is the famous "divergence" of the heat capacity during a first order phase transition.
There are certain phase transitions where the heat capacity does not become infinitely large, such as the process of a non-magnetic substance becoming a magnetic substance (when cooled below the so-called Curie temperature).
Answer:
Galileo Galilei
What launched the era of modern science in the 17th century? Modern science began in the 17th century, when the Italian physicist Galileo Galilei revived the Copernican view.
hope this helps
Explanation: