Explanation:
The temperature of the molten iron remained constant at 2750°C because of the heat absorbed to effect the phase change and not to change the temperature.
The heat of vaporization is a latent or hidden heat absorbed by substances that causes a phase change from liquid to gas.
- In essence, the heat is used to break intermolecular bonds between the particles of the melted vat.
- If enough heat is no supplied the molten vat will not boil off and become vapor.
- In transitioning from liquid to gas, heat is absorbed by a body to effect the phase change.
- When the body acquires enough heat, the particles are able to break off and boil.
- At the 2750°C mark, this is what is happening.
learn more:
Specific heat brainly.com/question/7210400
#learnwithBrainly
I believe the answer is carbon atoms
Answer:
569K
Explanation:
Q = 3.5kJ = 3500J
mass = 28.2g
∅1 = 20°C = 20 + 273 = 293K
∅2 = x
c = 0.449
Q = mc∆∅
3500 = 28.2×0.449×∆∅
3500 = 12.6618×∆∅
∆∅ = 3500/12.6618
∆∅ = 276.4220
∅2 - ∅1 = 276.4220
∅2 = 276.4220 + ∅1
∅2 = 276.4220 + 293
∅2 = 569.4220K
∅2 = 569K
Answer:
The answer to your question is 33.4 ml
Explanation:
Data
volume 1 = V1 = 42 ml
temperature 1 = T1 = 20°C
temperature 2 = T2 = -60°C
Volume 2 = V2 = x
Process
1.- Convert celsius to kelvin
T1 = 20 + 273 = 293°K
T2 = -60 + 273 = 233°K
2.- Use the Charles' law to solve this problem

Solve for V2
V2 = 
3.- Substitution
V2 = 
4.- Simplification
V2 = 
5.- Result
V2 = 33.4ml
Answer:
3.955*10^48
Explanation:
1 mole of a substance gives 6.02*10^23/6.57*10^24 will give x then cross multiply the answer. is 3.955*10^48