Solving this chemistry is a little bit hard because the question didn't give some important detailed.
So first, there are a couple problems with your question.
We will just need to know which direction will it proceed to reach equilibrium.
Your expression for Kc (and Qc ) for the reaction should be:
Kc = [C] / [A] [B]^2
You have not provided a value for Kc, so a value of Qc tells you absolutely nothing. Qc is only valuable in relation to a numerical value for Kc. If Qc = Kc, then the reaction is at equilibrium. If Q < K, the reaction will form more products to reach equilibrium, and if Q > Kc, the reaction will form more reactants.
X:5.8g=16:(23+1+12+3*16)
x:5.=16:84
x:=5.8* 16/84
this is approximately 1.1
Answer : The temperature in degree Celsius is, 
Explanation :
The conversion used for the temperature from Kelvin to degree Celsius is:

where,
= temperature in Kelvin
= temperature in centigrade
As we are given the temperature in Kelvin is, 2.7
Now we have to determine the temperature in Kelvin.



Therefore, the temperature in degree Celsius is, 
Answer:
false
Explanation:
As we know that in sodium-potassium pump .
sodium potassium move 3Na+ outside the cells
and moving 2k+ inside the cells
so that we can say that given statement is false
Answer FALSE
To make 1 Molar solution of hemoglobin ; 1600 grams of hemoglobin will be dissolved in 1 liter of water
The molecular weight of Hemoglobin is approximately 16,000 Daltons, when hemoglobin is converted to mM
16000 Dalton = 16000 ( g/mol )
given that 1 Dalton = 1 g/mol
To make 1 molar solution of hemoglobin using 1 liter of water
1 liter = 1000 grams
16000 Dalton = 16000 g/mol
Hence 16,000 grams of Hemoglobin is required to make 1 Molar solution of hemoglobin using 1 liter of water.
learn more : brainly.com/question/23517096