Answer:
IO₂
Explanation:
We have been given the mass percentages of the elements that makes up the compound:
Mass percentage given are:
Iodine = 79.86%
Oxygen = 20.14%
To calculate the empirical formula which is the simplest formula of the compound, we follow these steps:
> Express the mass percentages as the mass of the elements of the compound.
> Find the number of moles by dividing through by the atomic masses
> Divide by the smallest and either approximate to nearest whole number or multiply through by a factor.
> The ratio is the empirical formula of the compound.
Solution:
I O
% of elements 79.86 20.14
Mass (in g) 79.86 20.14
Moles(divide by
Atomic mass) 79.86/127 20.14/16
Moles 0.634 1.259
Dividing by
Smallest 0.634/0.634 1.259/0.634
1 2
The empirical formula is IO₂
Answer:
The answer is transition metals
Explanation:
Answer:
Why? Because of electron shells. Technically, they're not fully inert. They have very low reactivity potential, and can only be forced to become reactive with difficulty.
Explanation:
All chemical reactivity is made possible through the atom's electron arrangement. Electrons basically have shelves where they live, called "levels" or "shells". Each level is farther from the nucleus than the previous one. Atoms are most stable when their outer most shell (called the valence shell) is full. Atoms with an incomplete shell will react with other atoms, in an attempt to either fill out the outer shell, or to rid itself of it's valence electrons so that that previous level becomes a full valence level. If the valence shell ils already full, the atom will not be inclined to create compounds.
The first shell can hold up to two electrons. After the first two electrons, any additional electrons have to begin a new shell. The second shell can hold eight electrons before it becomes full. Helium is the first noble gas on the periodic table, having two protons and two electrons. Because helium's outer most shell is full, it does not react with other atoms.
By comparison, look at hydrogen and oxygen. Oxygen has eight electrons. The first two electrons occupy the first shell. The remaining six go to the second shell. This leaves the second shell with two empty spaces that can potentially be filled. Meanwhile, hydrogen has one electron, with it's valence shell having an empty space for one additional electron. Two hydrogen atoms give up their single electrons to an oxygen atom, so that all three end up with stable valence levels.
By the time an atom can fill out the second electron shell on it's own (10 total electrons) you end up with neon, the second noble gas.
Answer:
Elements that have atomic numbers from 20 to 83 are heavy elements, therefore the ratio is different. The ratio is 1.5:1, the reason for this difference is because of the repulsive force between protons: the stronger the repulsion force, the more neutrons are needed to stabilize the nuclei.
Ammonia yields nitric oxide and water in the presence of oxygen. The mass of nitric acid that will be produced from 6.40 gm of oxygen is 4.8 grams.
<h3>What is mass?</h3>
Mass is the product of the moles of the substance and its molar mass. it is given as,

The balanced chemical reaction is shown as:

Moles of oxygen are calculated by mass, 6.40 gm as,

From the reaction, the molar ratio of nitric oxide to oxygen is 4: 5 and is used to calculate the moles of nitric oxide as,

0.16 moles and molar mass, 30 of nitric oxide is used to calculate the mass as,

Therefore, 4.8 grams of nitric oxide will be produced.
Learn more about mass here:
brainly.com/question/4264188
#SPJ4