1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksley [76]
2 years ago
5

PLZ HELP IM TIMED!!!!!!!!!!!!!!

Mathematics
2 answers:
inessss [21]2 years ago
7 0

Explanation Step-by-Step:

Let x reflects the fees for entry

Y is the cost of each fare,

Equation Gwen

Around x + 10y = 30... I) I

Equation of Tristan

Hey, x + 15y = 40...... (ii) The

Equation with Keith

Around x + 10y = 30.......... Iii. (iii)

By solving Eq. (ii) and (iii), we are getting

x= 10

Y = 2

Therefore, entrance fees = $10

Price of a fare = $2 = $2

Please mark me as the most brainless as it will assist me in reaching the next step.

Anettt [7]2 years ago
3 0

Step-by-step explanation:

Let x be the entry fee.

Let y be the cost of each ticket in dollars.

Since Keith paid the entry fee and 10 tickets,

we have x + 10y = $30.

You might be interested in
Form a polynomial whose real zeros and degree are given.<br> Zeros: – 4, 0, 6;<br> degree: 3
Firdavs [7]

Answer:

?

Step-by-step explanation:

8 0
3 years ago
Strain-displacement relationship) Consider a unit cube of a solid occupying the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 After loa
Anastasy [175]

Answer:

please see answers are as in the explanation.

Step-by-step explanation:

As from the data of complete question,

0\leq x\leq 1\\0\leq y\leq 1\\0\leq z\leq 1\\u= \alpha x\\v=\beta y\\w=0

The question also has 3 parts given as

<em>Part a: Sketch the deformed shape for α=0.03, β=-0.01 .</em>

Solution

As w is 0 so the deflection is only in the x and y plane and thus can be sketched in xy plane.

the new points are calculated as follows

Point A(x=0,y=0)

Point A'(x+<em>α</em><em>x,y+</em><em>β</em><em>y) </em>

Point A'(0+<em>(0.03)</em><em>(0),0+</em><em>(-0.01)</em><em>(0))</em>

Point A'(0<em>,0)</em>

Point B(x=1,y=0)

Point B'(x+<em>α</em><em>x,y+</em><em>β</em><em>y) </em>

Point B'(1+<em>(0.03)</em><em>(1),0+</em><em>(-0.01)</em><em>(0))</em>

Point <em>B</em>'(1.03<em>,0)</em>

Point C(x=1,y=1)

Point C'(x+<em>α</em><em>x,y+</em><em>β</em><em>y) </em>

Point C'(1+<em>(0.03)</em><em>(1),1+</em><em>(-0.01)</em><em>(1))</em>

Point <em>C</em>'(1.03<em>,0.99)</em>

Point D(x=0,y=1)

Point D'(x+<em>α</em><em>x,y+</em><em>β</em><em>y) </em>

Point D'(0+<em>(0.03)</em><em>(0),1+</em><em>(-0.01)</em><em>(1))</em>

Point <em>D</em>'(0<em>,0.99)</em>

So the new points are A'(0,0), B'(1.03,0), C'(1.03,0.99) and D'(0,0.99)

The plot is attached with the solution.

<em>Part b: Calculate the six strain components.</em>

Solution

Normal Strain Components

                             \epsilon_{xx}=\frac{\partial u}{\partial x}=\frac{\partial (\alpha x)}{\partial x}=\alpha =0.03\\\epsilon_{yy}=\frac{\partial v}{\partial y}=\frac{\partial ( \beta y)}{\partial y}=\beta =-0.01\\\epsilon_{zz}=\frac{\partial w}{\partial z}=\frac{\partial (0)}{\partial z}=0\\

Shear Strain Components

                             \gamma_{xy}=\gamma_{yx}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=0\\\gamma_{xz}=\gamma_{zx}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}=0\\\gamma_{yz}=\gamma_{zy}=\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}=0

Part c: <em>Find the volume change</em>

<em></em>\Delta V=(1.03 \times 0.99 \times 1)-(1 \times 1 \times 1)\\\Delta V=(1.0197)-(1)\\\Delta V=0.0197\\<em></em>

<em>Also the change in volume is 0.0197</em>

For the unit cube, the change in terms of strains is given as

             \Delta V={V_0}[(1+\epsilon_{xx})]\times[(1+\epsilon_{yy})]\times [(1+\epsilon_{zz})]-[1 \times 1 \times 1]\\\Delta V={V_0}[1+\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz}+\epsilon_{xx}\epsilon_{yy}+\epsilon_{xx}\epsilon_{zz}+\epsilon_{yy}\epsilon_{zz}+\epsilon_{xx}\epsilon_{yy}\epsilon_{zz}-1]\\\Delta V={V_0}[\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz}]\\

As the strain values are small second and higher order values are ignored so

                                      \Delta V\approx {V_0}[\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz}]\\ \Delta V\approx [\epsilon_{xx}+\epsilon_{yy}+\epsilon_{zz}]\\

As the initial volume of cube is unitary so this result can be proved.

5 0
3 years ago
What is the square root of 30 rounded to the 2 decimal places.
umka21 [38]

Answer:

5.48 or 5.477225575 hope this helps

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
En una casa de empanadas hornean 1.200 por día. Si las cocinan en fuentes de 75 unidades, colocando siempre la mayor cantidad po
valkas [14]

Answer:

16 unidades preparan simultáneamente 1200 empanadas por día.

Step-by-step explanation:

Si cada fuente tiene una capacidad de 75 empanadas por horneada y que la mayor cantidad posible ocurre cuando el volumen de producción se cocina simultáneamente, entonces el total de fuentes es la cantidad total de producción dividida por la capacidad de empanadas por fuente. Es decir:

x = \frac{1200\,emp}{75\,\frac{emp}{und} }

x = 16\,unidades

16 unidades preparan simultáneamente 1200 empanadas por día.

3 0
3 years ago
A manufacturer knows that their items have a normally distributed length, with a mean of 19.3 inches, and standard deviation of
Scrat [10]
Dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
8 0
3 years ago
Other questions:
  • HELP......HELP ME
    8·1 answer
  • Use the function below to find F(3). F(x)=(1/5)^x
    9·2 answers
  • PLZ HELP ME PLZ I NEED THE HELP
    5·1 answer
  • Find the sum of the series [infinity] (−1)n n! n = 0 correct to three decimal places. SOLUTION We first observe that the series
    15·1 answer
  • Please help i'm really stuck
    10·2 answers
  • Determine whether the system has no one, or infinitely many solutions.<br>y = 2x + 6 <br>y = -x - 3​
    10·2 answers
  • HELP!!!!
    12·1 answer
  • Please help me please
    10·1 answer
  • Which best decribes the meaning of the term theorem
    9·1 answer
  • H(x) = x^2+6 g(x) = 8x-5 <br><br> show that hg(x)=19 simplifies to 16x^2 - 20x + 3 = 0
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!