Answer:
The second dart leaves the gun two times as faster than the first one.
Explanation:
Assuming no energy loss during the spring-dart energy transfer, we have by the conservation of energy principle

Given an arbitrary
and its double,
, launch velocities are

a)
Y₀ = initial position of the stone at the time of launch = 0 m
Y = final position of stone = 20.0 meters
a = acceleration = - 9.8 m/s²
v₀ = initial speed of stone at the time of launch = 30.0 m/s
v = final speed = ?
Using the equation
v² = v₀² + 2 a (Y - Y₀)
inserting the values
v² = 30² + 2 (- 9.8) (20 - 0)
v = 22.5 m/s
b)
Y₀ = initial position of the stone at the time of launch = 0 m
Y = maximum height gained
a = acceleration = - 9.8 m/s²
v₀ = initial speed of stone at the time of launch = 30.0 m/s
v = final speed = 0 m/s
Using the equation
v² = v₀² + 2 a (Y - Y₀)
inserting the values
0² = 30² + 2 (- 9.8) (Y - 0)
Y = 46 m
Answer:
60 meters
Explanation:
If you are going 3 meters in a second, and you are traveling for 20 seconds, you have to multiply
3meters/second*20seconds
cross out the seconds and you have
3 meters*20
60 meters
v
Convert the given temperatures from celsius to kelvin since we are dealing with gas.
To convert to kelvin, add 273.15 to the temperature in celsius.
T1 = 22 + 273.15 = 295.15 k
T2 = 4 + 273.15 = 277.15 k
V1 = 0.5 L
Let's find the final volume (V2).
To solve for V2 apply Charles Law formula below: