Since like poles repel, the two horseshoe magnets have like poles facing each other, hence they repel each other and therefore they will not come in contact
Answer:
1) the new power coming from the amplifier is 19.02 W
2) The distance away from the amplifier now is 5.50 m
3) u₁ = 69.24 m
Therefore have to move u₁ - u ( 69.24 - 5.50) = 63.74 farther
Explanation:
Lets say that I am at a distance "u" from the TV,
Let I₁ be the corresponding intensity of the sound at my location when sound level is 125dB
SO
S(indB) = 10log (I₁/1₀)
we substitute
125 = 10(I₁/10⁻¹²)
12.5 = log (I₁/10⁻¹²)
10^12.5 = I₁/10^-12
I₁ = 10^12.5 × 10^-12
I₁ = 10^0.5 W/m²
Now I₂ will be intensity of sound when corresponding sound level is 107 dB
107 = 10log(I₂/10⁻²)
10.7 = log(I₂/10⁻¹²)
10^10.7 = I₂ / 10^-12
I₂ = 10^10.7 × 10^-12
I₂ = 10^-1.3 W/m²
Now since we know that
I = P/4πu² ⇒ p = 4πu²I
THEN P₁ = 4πu²I₁ and P₂ =4πu²I₂
Therefore
P₁/P₂ = I₁/I₂
WE substitute
P₂ = P₁(I₂/I₁) = 1200 × ( 10^-1.3 / 10^0.5)
P₂ = 19.02 W
the new power coming from the amplifier is 19.02 W
2)
P₁ = 4πu²I₁
u =√(p₁/4πI₁)
u = √(1200/4π × 10^0.5)
u = 5.50 m
The distance away from the amplifier now is 5.50 m
3)
Let I₃ be the intensity corresponding to required sound level 85 dB
85 = 10log(I₃/10⁻¹²)
8.5 = log (I₃/10⁻¹²)
10^8.5 = I₃ / 10^-12
I₃ = 10^8.5 × 10^-12
I₃ = 10^-3.5 w/m²
Now, I ∝ 1/u²
so I₂/I₃ = u₁²/u²
u₁ = √(I₂/I₃) × u
u₁ = √(10^-1.3 / 10^-3.5) × 5.50
u₁ = 69.24 m
Therefore have to move u₁ - u ( 69.24 - 5.50) = 63.74 farther
Answer:
There are seven principles that form the content grounds of our teaching framework:
Non-maleficence. ...
Beneficence. ...
Health maximisation. ...
Efficiency. ...
Respect for autonomy. ...
Justice. ...
Proportionality.
Answer:
The moment is 81.102 k N-m in clockwise.
Explanation:
Given that,
Force = 260 N
Side = 580 mm
Distance h = 370 mm
According to figure,
Position of each point



We need to calculate the position vector of AB


We need to calculate the unit vector along AB


We need to calculate the force acting along the edge


We need to calculate the net moment

Put the value into the formula




Put the value into the formula


Negative sign shows the moment is in clockwise.
Hence, The moment is 81.102 k N-m in clockwise.