Answer:
Example A will appear green, while Example B will appear greenish-blue.
Explanation:
The color of an object depend on which part of the visible light it reflects towards the observer. Visible light is made up of seven colors: Violet, Indigo, Blue, Green, Yellow, Orange, and Red (VIBGYOR). If all the colors will be reflected object will appear white. If all the colors are absorbed the object appears black. In example A, only green color is being reflected so it will appear <em>Green</em>.
In example B, green and blue are being reflected so the object will appear a mix of green and blue. This color is cyan (greenish blue).
Answer:
Gases, liquids and solids are all made up of microscopic particles, but the behaviors of these particles differ in the three phases. ... gas are well separated with no regular arrangement. liquid are close together with no regular arrangement. solid are tightly packed, usually in a regular pattern.
<h3>Hope this is fine for you</h3>
The way I do it is suddenly, in the same sort of way that magicians try to pull a table cloth off a table when there's things on the table cloth.The sudden approach acts as an impulse of force and starts to accelerate the roll. But, the piece (assuming it has perforations) is off the roll before the roll can move, due to inertia. Then the roll will acclerate, move, slow down and stop. However, in accelerating, the roll will unravel. The bigger the impulse the more it will unravel.+++++++++++++++++++++++++++++++++++++++If on the other hand, the piece of paper is held firmly, and the roll is pulled, then the impulse is presumably given to the paper and the hand whose inertia is a lot more than that of the roll. So, I think I'd actually go for choice c)+++++++++++++++++++++++++++++++++++++This assumes that the roll is free to rotate.I think that a similar idea is behind the design and use of a "ballistic galvanometer". The charge is passed through the galvanometer quickly, as a current pulse. Then the needle starts to deflect, and the deflection is arranged to depend on the total charge that has passed through in the time of the current pulse.