Answer:
The independent variable influences change in the dependent variable whether the points on the scatterplot go up or down from left to right.
Explanation:
Answer:
N2H2(aq) + 2OH^-(aq) ----------> N2(g) + 2H2O(l) + 2e
Explanation:
Hydrazine is mostly used in thermal engineering as an anticorrosive agent. Hydrazine can be oxidized in aqueous solution as shown in the equation above. Oxidation has to do with loss of electrons and increase in oxidation number.
The oxidation number of nitrogen in the equation increased from -1 in hydrazine on the lefthand side of the reaction equation to zero in nitrogen on the right hand side of the reaction equation. Two electrons were lost in the process as shown.
C. Magma from venus mantle erupted as lava.
Explanation:
A volcano is a land form which results from the eruption of molten rocks (lava) on the surface. Volcanic rocks are a special type of igneous rock that forms when molten rock cools and solidifies on the surface.
For a planet like Venus which is presently not active and little to no movement occurs within the plates, the volcanisim must have occurred when the planet was relatively young and it must have been millions of years ago.
It is widely believed that Venus was geologically active in times past. Mantle generated lava must have solidified on the surface in times past to have formed the volcano.
Evaluating other options:
Impact of space objects on Venus would lead to the formation of a crater which is a depression on the surface. The rock would be mostly metamorphic.
If water was ever present in Venus, they would have produced sedimentary rocks instead. The erosive power of water is not high enough to cut through the crust. Also, water would not aid the formation of volcanoes.
Heat is not enough to from volcanoes. Other factors are also in play.
Answer:
Go to
On the left, click Missing.
(Optional) To review more details, click an item. View details.
Explanation:
Answer:
D. The rate decreases as reactants are used up.
Explanation:
Initially, the rate increases until the reaction is at equilibrium. At equilibrium, the rate is constant.
As the reaction progresses, the rate decreases to zero when reactants are used up ( for irriversible reactions only )