We have that energy=specific heat * change in temperature * mass. Thus, we have the final temperature (22) minus the initial temperature (55) to equal -33 as our change in temperature. Our specific heat is in J/g*C, so we're good with that because g stands for grams and the aluminium is measured in grams. As there are 10 grams of aluminum, we have

as our final temperature
An exothermic reaction would release energy and would therefore lose heat itself, while an endothermic reaction would absorb energy and gain heat. Therefore, losing heat would be an exothermic reaction
Feel free to ask further questions!
A beta particle is an electron and it has a -1 charge and zero mass.
Beta decay by
emitting an electron is called as β⁻
decay. When this happens, a neutron of the element converts into a proton by
emitting an electron. Hence, the mass of daughter nucleus is same as parent
atom but atomic number/number of protons is higher by 1 than atomic number of
parent atom.
In a β⁻ decay, the symbol is used as ₋₁⁰β or ₋₁⁰e.
-1 is for charge
<span> 0 is for the mass of the particle
</span>
Na3P is the formula if that helps
I really hope that this helps. H-F because the difference in electronegativity is the greatest, about 1.9 on the Pauling scale. The term means which bond has the greatest polarity and is thus most similar to an ionic bond, which involves the transfer of an electron (in opposition to covalent bonds, which share electrons). It is H-F because out of all the atoms here bonded with H, ie hydrogen, F is the most electronegative which means it can pull the bonded electrons to itself more than can Cl, O, and N. <span>That means a stronger polarization of the electron cloud forming the bond with hydrogen and therefore a stronger ionic character.</span>
Answer: 824.6 g of NaCl are produced from 500.0 g of chlorine.
Explanation:
To calculate the moles :
According to stoichiometry :
1 mole of
produce = 2 moles of
Thus 7.04 moles of
will produce=
of
Mass of
Thus 824.6 g of NaCl are produced from 500.0 g of chlorine.