Answer:
no b is the correct answer
Answer:
-3/5
Step-by-step explanation:
Hope this helps, the answer is actually -0.6, but in fraction form its -3/5 :)
Answer:
A
Step-by-step explanation:
Given 2 sides and the included angle use the Cosine rule to solve for x
x² = 1.6² + 1.1² - (2 × 1.6 × 1.1 × cos78° )
= 2.56 + 1.21 - ( 3.52 × cos78° )
= 3.77 - 0.7318
= 3.0382
Take the square root of both sides
x =
= 1.7 → A
Answers:
- Vertex form: y = -2(x-1)^2 + 8
- Standard form: y = -2x^2 + 4x + 6
Pick whichever form you prefer.
=============================================================
Explanation:
The vertex is the highest point in this case, which is located at (1,8).
In general, the vertex is (h,k). So we have h = 1 and k = 8.
One root of this parabola is (-1,0). So we'll plug x = -1 and y = 0 in as well. As an alternative, you can go for (x,y) = (3,0) instead.
Plug those four values mentioned into the equation below. Solve for 'a'.
y = a(x-h)^2 + k
0 = a(-1-1)^2+8
0 = a(-2)^2+8
0 = 4a+8
4a+8 = 0
4a = -8
a = -8/4
a = -2
The vertex form of this parabola is y = -2(x-1)^2+8
Expanding that out gets us the following
y = -2(x-1)^2+8
y = -2(x^2-2x+1)+8
y = -2x^2+4x-2+8
y = -2x^2+4x+6 .... equation in standard form
540 people can ride the wild river in 1 hour if all of the rafts are used and each raft is full
<u>Solution:</u>
Given, There are 15 rafts available for people to use on the adventure river ride.
Each raft holds 12 people.
Then, total people capacity over all rafts = 15 x 12 = 180 people.
The park runs this ride 3 times each hour.
We have to find how many people can ride the wild river in 1 hour if all of the rafts are used and each raft is full?
Then, <em>total people count who take ride = number of rides x number of people per ride
</em>
= 3 x 180 = 540
Hence, 540 people can take ride in 1 hour.