M = 4 g = 4/1000 kg = 0.004 kg, θ₂ = 21.0°C, θ₁ = 0°C , c = 0.44kJ/kg°C,
Q = mc(θ₂ - θ₁)
Q = 0.004*0.440*(21 - 0)
Q = 0.03696 kJ
0.03696 kJ<span> of heat is absorbed.</span>
A .
1 mol of sodium na atoms -22.99
22.99 x 8 =183.92
Closest answer
Answer:
22.44°C will be the final temperature of the water.
Explanation:
Heat lost by tin will be equal to heat gained by the water

Mass of tin = 
Specific heat capacity of tin = 
Initial temperature of the tin = 
Final temperature =
=T

Mass of water= 
Specific heat capacity of water= 
Initial temperature of the water = 
Final temperature of water =
=T



On substituting all values:

we get, T = 22.44°C
22.44°C will be the final temperature of the water.
Answer:
Nitrate NO3
here's your answer, hope it helps you
Lies just beyond the continental slope is the open ocean zone and it has three subzones namely the epipelagic(sunlit zone), mesopelagic(disphotic zone) and bathypelagic zones(aphotic zone). The oceanic zone covers 65% of the ocean's water and where different types of terrains can be found. From deep trenches, deep sea volcanoes and basins. A variety of sea creatures can also be found on each subzone.