Answer:
0.017mole
0.0033M
Explanation:
Given parameters:
Formula of the compound:
Mg(ClO₃)₂
Mass of the sample = 3.24g
Unknown:
Number of moles of the sample = ?
Molarity = ?
Solution:
The number of moles of any substance is given as:
Number of moles =
Molar mass of Mg(ClO₃)₂ = 24 + 2[35.5 + 3(16)] = 191g/mol
Number of moles =
= 0.017mole
Molarity is the number of moles of a solute in a solution:
Molarity =
Volume given = 5.08L
Molarity =
= 0.0033M
1. Francium
2. Nitrogen
3.rubidium
4. Krypton
The answer is 1.05 cubic centimeters and 1.05 mL (1 cubic centimeter is equal to 1 mL)
Diffusion is the process of a substance spreading out to evenly fill its container or environment. Rate of diffusion of a gas is inversely proportional to the molar mass of the gas.

Lighter(lower) the molar mass of the gas , faster will be its rate of diffusion and heavier (higher) the molar mass of the gas , slower will be its rate of diffusion.
We have to arrange the given gases from slowest rate of diffusion to fastest rate of diffusion that means we need to arrange gases from higher molar mass to lower molar mass.
Molar mass of given gases are :
Cl = 35.5 g/mol
Xe = 131.29 g/mol
He = 4.00 g/mol
N = 14.00 g/mol
So correct order for slowest rate of diffusion (highest molar mass) to fastest rate of diffusion (lowest molar mass) is :
Xe , Cl , N , He
Xe having the highest molar mass will have the slowest rate of diffusion and He with lowest molar mass will have the fastest rate of diffusion, so option 'c' is correct.
Note : Slowest rate of diffusion = High Molar Mass
Fastest rate of diffusion = Low Molar Mass
Answer:
The temperature of the solute/solvent without any external effect would decrease.
Explanation:
As the bonding between the solute particles is really strong, therefore a large amount of energy is required to overcome these forces. So that the new bonding between the solute and solvent is created.
In order to achieve this, there will be a lot of energy required and that is through the heating process. So the solution will require energy so the solute will dissolve fully either by provision of external force i.e stirring or by heating.