Write procedural steps that allow you to demonstrate the sun's role in the water cycle using common material - for each explain what you are modeling and how the materials you have chosen represent nature.
Using the accepted value for the volume of 1 gram of water at the temperature of the room that you reported above, what is the accepted value for the density of water
Answer: An existing theory is modified so that it can explain both the old and new observations.
Explanation:
Answer:
9.36
Explanation:
Sodium formate is the conjugate base of formic acid.
Also,

for sodium formate is 
Given that:
of formic acid = 
And, 
So,


Concentration = 0.35 M
HCOONa ⇒ Na⁺ + HCOO⁻
Consider the ICE take for the formate ion as:
HCOO⁻ + H₂O ⇄ HCOOH + OH⁻
At t=0 0.35 - -
At t =equilibrium (0.35-x) x x
The expression for dissociation constant of sodium formate is:
![K_{b}=\frac {[OH^-][HCOOH]}{[HCOO^-]}](https://tex.z-dn.net/?f=K_%7Bb%7D%3D%5Cfrac%20%7B%5BOH%5E-%5D%5BHCOOH%5D%7D%7B%5BHCOO%5E-%5D%7D)

Solving for x, we get:
x = 0.44×10⁻⁵ M
pOH = -log[OH⁻] = -log(0.44×10⁻⁵) = 4.64
pH + pOH = 14
So,
<u>pH = 14 - 4.64 = 9.36</u>
Answer:
From molar mass=total RAM of each individual element
78.8=(16+1)×3+M
78.8-51=M
27.8g/mol=M
Answer:
a. 
b. K = 192.9
c. Products are favored.
Explanation:
Hello!
a. In this case, according to the unbalanced chemical reaction we need to balance HCl as shown below:

In order to reach 2 hydrogen and chlorine atoms at both sides.
b. Here, given the concentrations at equilibrium and the following equilibrium expression, we have:
![K=\frac{[HCl]^2}{[H_2][Cl_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BHCl%5D%5E2%7D%7B%5BH_2%5D%5BCl_2%5D%7D)
Therefore, we plug in the data to obtain:

c. Finally, we infer that since K>>1 the forward reaction towards products is favored.
Best regards!